We study the nodal length of random toral Laplace eigenfunctions ("arithmetic random waves") restricted to decreasing domains ("shrinking balls"), all the way down to Planck scale. We find that, up to a natural scaling, for "generic" energies the variance of the restricted nodal length obeys the same asymptotic law as the total nodal length, and these are asymptotically fully correlated. This, among other things, allows for a statistical reconstruction of the full toral length based on partial information. One of the key novel ingredients of our work, borrowing from number theory, is the use of bounds for the so-called spectral quasi-correlations, i.e., unusually small sums of lattice points lying on the same circle.
Benatar, J., Marinucci, D., Wigman, I. (2020). Planck-scale distribution of nodal length of arithmetic random waves. JOURNAL D'ANALYSE MATHEMATIQUE, 141(2), 707-749 [10.1007/s11854-020-0114-7].
Planck-scale distribution of nodal length of arithmetic random waves
Marinucci, D;
2020-01-01
Abstract
We study the nodal length of random toral Laplace eigenfunctions ("arithmetic random waves") restricted to decreasing domains ("shrinking balls"), all the way down to Planck scale. We find that, up to a natural scaling, for "generic" energies the variance of the restricted nodal length obeys the same asymptotic law as the total nodal length, and these are asymptotically fully correlated. This, among other things, allows for a statistical reconstruction of the full toral length based on partial information. One of the key novel ingredients of our work, borrowing from number theory, is the use of bounds for the so-called spectral quasi-correlations, i.e., unusually small sums of lattice points lying on the same circle.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.