We study the value of information for a manager who invests in a stock market to optimize the utility of her future wealth. We consider an incomplete financial market model with a mean reverting market price of risk that cannot be directly observed by the manager. The available information is represented by the filtration generated by the stock price process. We solve the classical Merton problem for an incomplete market under partial information by means of filtering techniques and the martingale approach.

Colaneri, K., Herzel, S., Nicolosi, M. (2018). The value of information for optimal portfolio management. In Mathematical and Statistical Methods for Actuarial Sciences and Finance, MAF 2018 (pp. 225-229). Springer, Cham [10.1007/978-3-319-89824-7_41].

The value of information for optimal portfolio management

Colaneri K.;Herzel S.;
2018-01-01

Abstract

We study the value of information for a manager who invests in a stock market to optimize the utility of her future wealth. We consider an incomplete financial market model with a mean reverting market price of risk that cannot be directly observed by the manager. The available information is represented by the filtration generated by the stock price process. We solve the classical Merton problem for an incomplete market under partial information by means of filtering techniques and the martingale approach.
2018
Settore SECS-S/06 - METODI MATEMATICI DELL'ECONOMIA E DELLE SCIENZE ATTUARIALI E FINANZIARIE
English
Rilevanza internazionale
Capitolo o saggio
Martingale approach; Merton model; Partial information; Utility maximization
https://link.springer.com/chapter/10.1007/978-3-319-89824-7_41
Colaneri, K., Herzel, S., Nicolosi, M. (2018). The value of information for optimal portfolio management. In Mathematical and Statistical Methods for Actuarial Sciences and Finance, MAF 2018 (pp. 225-229). Springer, Cham [10.1007/978-3-319-89824-7_41].
Colaneri, K; Herzel, S; Nicolosi, M
Contributo in libro
File in questo prodotto:
File Dimensione Formato  
(2018)MAF.pdf

solo utenti autorizzati

Tipologia: Versione Editoriale (PDF)
Licenza: Copyright dell'editore
Dimensione 89.95 kB
Formato Adobe PDF
89.95 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2108/299872
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
social impact