Graphene, consisting of an inert, thermally stable material with an atomically flat, dangling-bond-free surface, is by essence an ideal template layer for van der Waals heteroepitaxy of two-dimensional materials such as silicene. However, depending on the synthesis method and growth parameters, graphene (Gr) substrates could exhibit, on a single sample, various surface structures, thicknesses, defects, and step heights. These structures noticeably affect the growth mode of epitaxial layers, e.g., turning the layer-by-layer growth into the Volmer-Weber growth promoted by defect-assisted nucleation. In this work, the growth of silicon on chemical vapor deposited epitaxial Gr (1 ML Gr/1 ML Gr buffer) on a 6H-SiC(0001) substrate is investigated by a combination of atomic force microscopy (AFM), scanning tunneling microscopy (STM), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), and Raman spectroscopy measurements. It is shown that the perfect control of full-scale almost defect-free 1 ML Gr with a single surface structure and the ultraclean conditions for molecular beam epitaxy deposition of silicon represent key prerequisites for ensuring the growth of extended silicene sheets on epitaxial graphene. At low coverages, the deposition of Si produces large silicene sheets (some hundreds of nanometers large) attested by both AFM and SEM observations and the onset of a Raman peak at 560 cm-1, very close to the theoretical value of 570 cm-1 calculated for free-standing silicene. This vibrational mode at 560 cm-1 represents the highest ever experimentally measured value and is representative of quasi-free-standing silicene with almost no interaction with inert nonmetal substrates. From a coverage rate of 1 ML, the silicene sheets disappear at the expense of 3D Si dendritic islands whose density, size, and thickness increase with the deposited thickness. From this coverage, the Raman mode assigned to quasi-free-standing silicene totally vanishes, and the 2D flakes of silicene are no longer observed by AFM. The experimental results are in very good agreement with the results of kinetic Monte Carlo simulations that rationalize the initial flake growth in solid-state dewetting conditions, followed by the growth of ridges surrounding and eventually covering the 2D flakes. A full description of the growth mechanism is given. This study, which covers a wide range of growth parameters, challenges recent results stating the impossibility to grow silicene on a carbon inert surface and is very promising for large-scale silicene growth. It shows that silicene growth can be achieved using perfectly controlled and ultraclean deposition conditions and an almost defect-free Gr substrate.

Ben Jabra, Z., Abel, M., Fabbri, F., Aqua, J.-., Koudia, M., Michon, A., et al. (2022). Van der Waals heteroepitaxy of air-stable quasi-free-standing silicene layers on CVD epitaxial graphene/6H-SiC. ACS NANO, 16(4), 5920-5931 [10.1021/acsnano.1c11122].

Van der Waals heteroepitaxy of air-stable quasi-free-standing silicene layers on CVD epitaxial graphene/6H-SiC

Castrucci P.;De Crescenzi M.;
2022-01-01

Abstract

Graphene, consisting of an inert, thermally stable material with an atomically flat, dangling-bond-free surface, is by essence an ideal template layer for van der Waals heteroepitaxy of two-dimensional materials such as silicene. However, depending on the synthesis method and growth parameters, graphene (Gr) substrates could exhibit, on a single sample, various surface structures, thicknesses, defects, and step heights. These structures noticeably affect the growth mode of epitaxial layers, e.g., turning the layer-by-layer growth into the Volmer-Weber growth promoted by defect-assisted nucleation. In this work, the growth of silicon on chemical vapor deposited epitaxial Gr (1 ML Gr/1 ML Gr buffer) on a 6H-SiC(0001) substrate is investigated by a combination of atomic force microscopy (AFM), scanning tunneling microscopy (STM), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), and Raman spectroscopy measurements. It is shown that the perfect control of full-scale almost defect-free 1 ML Gr with a single surface structure and the ultraclean conditions for molecular beam epitaxy deposition of silicon represent key prerequisites for ensuring the growth of extended silicene sheets on epitaxial graphene. At low coverages, the deposition of Si produces large silicene sheets (some hundreds of nanometers large) attested by both AFM and SEM observations and the onset of a Raman peak at 560 cm-1, very close to the theoretical value of 570 cm-1 calculated for free-standing silicene. This vibrational mode at 560 cm-1 represents the highest ever experimentally measured value and is representative of quasi-free-standing silicene with almost no interaction with inert nonmetal substrates. From a coverage rate of 1 ML, the silicene sheets disappear at the expense of 3D Si dendritic islands whose density, size, and thickness increase with the deposited thickness. From this coverage, the Raman mode assigned to quasi-free-standing silicene totally vanishes, and the 2D flakes of silicene are no longer observed by AFM. The experimental results are in very good agreement with the results of kinetic Monte Carlo simulations that rationalize the initial flake growth in solid-state dewetting conditions, followed by the growth of ridges surrounding and eventually covering the 2D flakes. A full description of the growth mechanism is given. This study, which covers a wide range of growth parameters, challenges recent results stating the impossibility to grow silicene on a carbon inert surface and is very promising for large-scale silicene growth. It shows that silicene growth can be achieved using perfectly controlled and ultraclean deposition conditions and an almost defect-free Gr substrate.
2022
Pubblicato
Rilevanza internazionale
Articolo
Esperti anonimi
Settore FIS/03 - FISICA DELLA MATERIA
English
2D materials
graphene
kinetic Monte Carlo
molecular beam epitaxy
nucleation and growth
silicene
van der Waals heterostructure
Ben Jabra, Z., Abel, M., Fabbri, F., Aqua, J.-., Koudia, M., Michon, A., et al. (2022). Van der Waals heteroepitaxy of air-stable quasi-free-standing silicene layers on CVD epitaxial graphene/6H-SiC. ACS NANO, 16(4), 5920-5931 [10.1021/acsnano.1c11122].
Ben Jabra, Z; Abel, M; Fabbri, F; Aqua, J-; Koudia, M; Michon, A; Castrucci, P; Ronda, A; Vach, H; De Crescenzi, M; Berbezier, I
Articolo su rivista
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2108/299545
Citazioni
  • ???jsp.display-item.citation.pmc??? 1
  • Scopus 15
  • ???jsp.display-item.citation.isi??? 14
social impact