As is well-known, in a finitary algebraic structure the set Γ of all the non-generators is the intersection of all the maximal proper substructures. In particular, Γ is a substructure. We show that the corresponding statements hold for complete semilattices but fail for complete lattices, when as the notion of substructure we take complete subsemilattices and complete sublattices, respectively.

Lipparini, P. (2022). Non-generators in complete lattices and semilattices. ACTA MATHEMATICA HUNGARICA [10.1007/s10474-022-01232-3].

Non-generators in complete lattices and semilattices

Lipparini, P.
2022-01-01

Abstract

As is well-known, in a finitary algebraic structure the set Γ of all the non-generators is the intersection of all the maximal proper substructures. In particular, Γ is a substructure. We show that the corresponding statements hold for complete semilattices but fail for complete lattices, when as the notion of substructure we take complete subsemilattices and complete sublattices, respectively.
2022
Pubblicato
Rilevanza internazionale
Articolo
Esperti anonimi
Settore MAT/02 - ALGEBRA
English
Con Impact Factor ISI
non-generator; complete lattice; complete sublattice; complete semilattice
https://link.springer.com/article/10.1007/s10474-022-01232-3
https://arxiv.org/abs/2108.03303
Lipparini, P. (2022). Non-generators in complete lattices and semilattices. ACTA MATHEMATICA HUNGARICA [10.1007/s10474-022-01232-3].
Lipparini, P
Articolo su rivista
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2108/297807
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact