We prove that on Xn, the plane blown–up at n general points, there are Ulrich line bundles with respect to a line bundle corresponding to curves of degree m passing simply through the n blown–up points, with m less than or equal to 2 times the square root of n 2, and such that the line bundle in question is very ample on Xn. We prove that the number of these Ulrich line bundles tends to infinity with n. We also prove the existence of slope–stable rank–r Ulrich vector bundles on Xn, for n > 2 and any r > 1 and we compute the dimensions of their moduli spaces. These computations imply that Xn is Ulrich wild.

Ciliberto, C., Flamini, F., Knutsen, A.l. (2023). Ulrich bundles on a general blow–up of the plane. ANNALI DI MATEMATICA PURA ED APPLICATA, 202(4), 1835-1854 [10.1007/s10231-023-01303-4].

Ulrich bundles on a general blow–up of the plane

Ciliberto, Ciro;Flamini, Flaminio
Membro del Collaboration Group
;
2023-01-01

Abstract

We prove that on Xn, the plane blown–up at n general points, there are Ulrich line bundles with respect to a line bundle corresponding to curves of degree m passing simply through the n blown–up points, with m less than or equal to 2 times the square root of n 2, and such that the line bundle in question is very ample on Xn. We prove that the number of these Ulrich line bundles tends to infinity with n. We also prove the existence of slope–stable rank–r Ulrich vector bundles on Xn, for n > 2 and any r > 1 and we compute the dimensions of their moduli spaces. These computations imply that Xn is Ulrich wild.
gen-2023
Pubblicato
Rilevanza internazionale
Articolo
Esperti anonimi
Settore MAT/03 - GEOMETRIA
Settore MATH-02/B - Geometria
English
Con Impact Factor ISI
Ulrich vector bundles
https://link.springer.com/article/10.1007/s10231-023-01303-4
Ciliberto, C., Flamini, F., Knutsen, A.l. (2023). Ulrich bundles on a general blow–up of the plane. ANNALI DI MATEMATICA PURA ED APPLICATA, 202(4), 1835-1854 [10.1007/s10231-023-01303-4].
Ciliberto, C; Flamini, F; Knutsen, Al
Articolo su rivista
File in questo prodotto:
File Dimensione Formato  
AMPA2023_pubbl_online.pdf

accesso aperto

Descrizione: Articolo in rivista
Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 393.98 kB
Formato Adobe PDF
393.98 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2108/295448
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 2
social impact