The direct application of corrosion inhibitors on metal surfaces is potentially dangerous for the environment and the restoration operators, thus new conservation strategies are mandatory. In this study, two copper corrosion inhibitors, 1H-benzotriazole (BTA) and 5-phenyl-1H-tetrazole (PT), are encapsulated in a silica nanocontainer, for future application in smart coatings, with the aim to reduce the amount of chemicals used in treatments, their dispersion in the environment and the direct exposure of the operators to these chemicals. In particular, composite silica nanocapsules, containing the corrosion inhibitors, are prepared via one-step synthesis, based on mini-emulsion polymerisation processes. The morphology, structure, and texture of these loaded silica nanocontainers are characterised by scanning electron microscopy (SEM), transmission electron microscopy (TEM), and N2 physisorption (BET/BJH). Micro-Raman spectroscopy (RS) is performed to characterise the composition. UVevisible spectroscopy and thermal analysis (TG/DSC) are performed for the loading and encapsulation efficiency (L%, EE%) study. Synthesised nanocapsules show a core-shell structure and, when loaded with the inhibitors, have size ranging from about 130 to 170 nm and a BET surface area of the order of 800 m2/g. The EE% is maximum in the case of BTA and decreases to ~52% in the case of PT.
Privitera, A., Ruggiero, L., Venditti, I., Pasqual Laverdura, U., Tuti, S., De Felicis, D., et al. (2022). One step nanoencapsulation of corrosion inhibitors for gradual release application. MATERIALS TODAY CHEMISTRY, 24 [10.1016/j.mtchem.2022.100851].
One step nanoencapsulation of corrosion inhibitors for gradual release application
Duranti, L.;Di Bartolomeo, E.;
2022-01-01
Abstract
The direct application of corrosion inhibitors on metal surfaces is potentially dangerous for the environment and the restoration operators, thus new conservation strategies are mandatory. In this study, two copper corrosion inhibitors, 1H-benzotriazole (BTA) and 5-phenyl-1H-tetrazole (PT), are encapsulated in a silica nanocontainer, for future application in smart coatings, with the aim to reduce the amount of chemicals used in treatments, their dispersion in the environment and the direct exposure of the operators to these chemicals. In particular, composite silica nanocapsules, containing the corrosion inhibitors, are prepared via one-step synthesis, based on mini-emulsion polymerisation processes. The morphology, structure, and texture of these loaded silica nanocontainers are characterised by scanning electron microscopy (SEM), transmission electron microscopy (TEM), and N2 physisorption (BET/BJH). Micro-Raman spectroscopy (RS) is performed to characterise the composition. UVevisible spectroscopy and thermal analysis (TG/DSC) are performed for the loading and encapsulation efficiency (L%, EE%) study. Synthesised nanocapsules show a core-shell structure and, when loaded with the inhibitors, have size ranging from about 130 to 170 nm and a BET surface area of the order of 800 m2/g. The EE% is maximum in the case of BTA and decreases to ~52% in the case of PT.File | Dimensione | Formato | |
---|---|---|---|
1-s2.0-S2468519422000805-main.pdf
solo utenti autorizzati
Tipologia:
Versione Editoriale (PDF)
Licenza:
Copyright dell'editore
Dimensione
4.49 MB
Formato
Adobe PDF
|
4.49 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.