: Bisphenol A (BPA) is a plasticizer with endocrine disrupting properties particularly relevant for children health. Recently BPA has been associated with metabolic dysfunctions but no data are yet available in specific, long-term studies. This study aimed to evaluate BPA modes of action and hazards during animal juvenile life-stage, corresponding to childhood. Immature Sprague-Dawley rats of both sexes were orally treated with 0 (vehicle only-olive oil), 2, 6, and 18 mg/kg bw per day of BPA for 28 days, from weaning to sexual maturity. Dose levels were obtained from the PERSUADED biomonitoring study in Italian children. Both no-observed-adverse-effect-level (NOAEL)/low-observed-adverse-effect-level (LOAEL) and estimated benchmark dose (BMD) approaches were applied. General toxicity, parameters of sexual development, endocrine/reproductive/functional liver and kidney biomarkers, histopathology of target tissues, and gene expression in hypothalamic-pituitary area and liver were studied. No mortality or general toxicity occurred. Sex-specific alterations were observed in liver, thyroid, spleen, leptin/adiponectin serum levels, and hypothalamic-pituitary gene expression. Thyroid homeostasis and liver were the most sensitive targets of BPA exposure in the peripubertal phase. The proposed LOAEL was 2 mg/kg bw, considering as critical effect the liver endpoints, kidney weight in male and adrenal histomorphometrical alterations and osteopontin upregulation in female rats. The BMD lower bounds were 0.05 and 1.33 mg/kg bw in males and females, considering liver and thyroid biomarkers, respectively. Overall, BPA evaluation at dose levels derived from children biomonitoring study allowed to identify sex-specific, targeted toxicological effects that may have significant impact on risk assessment for children.
Tassinari, R., Narciso, L., Tait, S., Busani, L., Martinelli, A., Di Virgilio, A., et al. (2020). Juvenile toxicity rodent model to study toxicological effects of bisphenol A (BPA) at dose levels derived from Italian children biomonitoring study. TOXICOLOGICAL SCIENCES, 173(2), 387-401 [10.1093/toxsci/kfz226].
Juvenile toxicity rodent model to study toxicological effects of bisphenol A (BPA) at dose levels derived from Italian children biomonitoring study
Deodati A.;Cianfarani S.;Germani D.;
2020-01-01
Abstract
: Bisphenol A (BPA) is a plasticizer with endocrine disrupting properties particularly relevant for children health. Recently BPA has been associated with metabolic dysfunctions but no data are yet available in specific, long-term studies. This study aimed to evaluate BPA modes of action and hazards during animal juvenile life-stage, corresponding to childhood. Immature Sprague-Dawley rats of both sexes were orally treated with 0 (vehicle only-olive oil), 2, 6, and 18 mg/kg bw per day of BPA for 28 days, from weaning to sexual maturity. Dose levels were obtained from the PERSUADED biomonitoring study in Italian children. Both no-observed-adverse-effect-level (NOAEL)/low-observed-adverse-effect-level (LOAEL) and estimated benchmark dose (BMD) approaches were applied. General toxicity, parameters of sexual development, endocrine/reproductive/functional liver and kidney biomarkers, histopathology of target tissues, and gene expression in hypothalamic-pituitary area and liver were studied. No mortality or general toxicity occurred. Sex-specific alterations were observed in liver, thyroid, spleen, leptin/adiponectin serum levels, and hypothalamic-pituitary gene expression. Thyroid homeostasis and liver were the most sensitive targets of BPA exposure in the peripubertal phase. The proposed LOAEL was 2 mg/kg bw, considering as critical effect the liver endpoints, kidney weight in male and adrenal histomorphometrical alterations and osteopontin upregulation in female rats. The BMD lower bounds were 0.05 and 1.33 mg/kg bw in males and females, considering liver and thyroid biomarkers, respectively. Overall, BPA evaluation at dose levels derived from children biomonitoring study allowed to identify sex-specific, targeted toxicological effects that may have significant impact on risk assessment for children.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.