For a simplicial complex or more generally Boolean cell complex Delta we study the behavior of the f- and h-vector under barycentric subdivision. We show that if Delta has a non-negative h-vector then the h-polynomial of its barycentric subdivision has only simple and real zeros. As a consequence this implies a strong version of the Charney-Davis conjecture for spheres that are the subdivision of a Boolean cell complex or the subdivision of the boundary complex of a simple polytope. For a general (d -1)-dimensional simplicial complex Delta the h-polynomial of its n-th iterated subdivision shows convergent behavior. More precisely, we show that among the zeros of this h-polynomial there is one converging to infinity and the other d -1 converge to a set of d - 1 real numbers which only depends on d.
Brenti, F., & Welker, V. (2008). F-Vectors of barycentric subdivisions. MATHEMATISCHE ZEITSCHRIFT, 259(4), 849-865.
Tipologia: | Articolo su rivista |
Citazione: | Brenti, F., & Welker, V. (2008). F-Vectors of barycentric subdivisions. MATHEMATISCHE ZEITSCHRIFT, 259(4), 849-865. |
Lingua: | English |
Settore Scientifico Disciplinare: | Settore MAT/03 - Geometria |
Revisione (peer review): | Sì, ma tipo non specificato |
Tipo: | Articolo |
Rilevanza: | Rilevanza internazionale |
Digital Object Identifier (DOI): | http://dx.doi.org/10.1007/s00209-007-0251-z |
Stato di pubblicazione: | Pubblicato |
Data di pubblicazione: | 2008 |
Titolo: | F-Vectors of barycentric subdivisions |
Autori: | |
Autori: | Brenti, F ; Welker, V |
Appare nelle tipologie: | 01 - Articolo su rivista |