The results presented in this paper show that by employing a combination of metasurface and substrate integrated waveguide (SIW) technologies, we can realize a compact and low-profile antenna that overcomes the drawbacks of narrow-bandwidth and low-radiation properties encountered by terahertz antennas on-chip (AoC). In addition, an effective RF cross-shaped feed structure is used to excite the antenna from its underside by coupling, electromagnetically, RF energy through the multi-layered antenna structure. The feed mechanism facilitates integration with the integrated circuits. The proposed antenna is constructed from five stacked layers, comprising metal-silicon-metal-silicon-metal. The dimensions of the AoC are 1 x 1 x 0.265 mm(3). The AoC is shown to have an impedance match, radiation gain and efficiency of <= -15 dB, 8.5 dBi and 67.5%, respectively, over a frequency range of 0.20-0.22 THz. The results show that the proposed AoC design is viable for terahertz front-end applications.
Alibakhshikenari, M., Virdee, B.s., Althuwayb, A.a., Mariyanayagam, D., Limiti, E. (2021). Compact and low-profile on-chip antenna using underside electromagnetic coupling mechanism for terahertz front-end transceivers. ELECTRONICS, 10(11) [10.3390/electronics10111264].
Compact and low-profile on-chip antenna using underside electromagnetic coupling mechanism for terahertz front-end transceivers
Limiti E.
2021-05-01
Abstract
The results presented in this paper show that by employing a combination of metasurface and substrate integrated waveguide (SIW) technologies, we can realize a compact and low-profile antenna that overcomes the drawbacks of narrow-bandwidth and low-radiation properties encountered by terahertz antennas on-chip (AoC). In addition, an effective RF cross-shaped feed structure is used to excite the antenna from its underside by coupling, electromagnetically, RF energy through the multi-layered antenna structure. The feed mechanism facilitates integration with the integrated circuits. The proposed antenna is constructed from five stacked layers, comprising metal-silicon-metal-silicon-metal. The dimensions of the AoC are 1 x 1 x 0.265 mm(3). The AoC is shown to have an impedance match, radiation gain and efficiency of <= -15 dB, 8.5 dBi and 67.5%, respectively, over a frequency range of 0.20-0.22 THz. The results show that the proposed AoC design is viable for terahertz front-end applications.File | Dimensione | Formato | |
---|---|---|---|
Compact and Low-Profile On-Chip Antenna Using Underside Electromagnetic Coupling Mechanism for Terahertz Front-End Transceivers.pdf
accesso aperto
Tipologia:
Versione Editoriale (PDF)
Licenza:
Non specificato
Dimensione
2.62 MB
Formato
Adobe PDF
|
2.62 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.