Proton-conducting oxides offer a promising electrolyte solution for intermediate temperature solid oxide fuel cells (SOFCs) due to their high conductivity and low activation energy. However, the lower operation temperature leads to a reduced cathode activity and thus a poorer fuel cell performance. La0.8Sr0.2MnO3−δ (LSM) is the classical cathode material for high-temperature SOFCs, which lack features as a proper SOFC cathode material at intermediate temperatures. Despite this, we here successfully couple nanostructured LSM cathode with proton-conducting electrolytes to operate below 600°C with desirable SOFC performance. Inkjet printing allows depositing nanostructured particles of LSM on Y-doped BaZrO3 (BZY) backbones as cathodes for proton-conducting SOFCs, which provides one of the highest power output for the BZY-based fuel cells below 600°C. This somehow changes the common knowledge that LSM can be applied as a SOFC cathode materials only at high temperatures (above 700°C).
Daʹas, E.h., Bi, L., Boulfrad, S., Traversa, E. (2018). Nanostructuring the electronic conducting La0.8Sr0.2MnO3−δ cathode for high-performance in proton-conducting solid oxide fuel cells below 600°C. SCIENCE CHINA. MATERIALS, 61(1), 57-64 [10.1007/s40843-017-9125-1].
Nanostructuring the electronic conducting La0.8Sr0.2MnO3−δ cathode for high-performance in proton-conducting solid oxide fuel cells below 600°C
Traversa E.
2018-01-01
Abstract
Proton-conducting oxides offer a promising electrolyte solution for intermediate temperature solid oxide fuel cells (SOFCs) due to their high conductivity and low activation energy. However, the lower operation temperature leads to a reduced cathode activity and thus a poorer fuel cell performance. La0.8Sr0.2MnO3−δ (LSM) is the classical cathode material for high-temperature SOFCs, which lack features as a proper SOFC cathode material at intermediate temperatures. Despite this, we here successfully couple nanostructured LSM cathode with proton-conducting electrolytes to operate below 600°C with desirable SOFC performance. Inkjet printing allows depositing nanostructured particles of LSM on Y-doped BaZrO3 (BZY) backbones as cathodes for proton-conducting SOFCs, which provides one of the highest power output for the BZY-based fuel cells below 600°C. This somehow changes the common knowledge that LSM can be applied as a SOFC cathode materials only at high temperatures (above 700°C).File | Dimensione | Formato | |
---|---|---|---|
Daʹas2018_Article_NanostructuringTheElectronicCo.pdf
solo utenti autorizzati
Tipologia:
Versione Editoriale (PDF)
Licenza:
Copyright dell'editore
Dimensione
1.52 MB
Formato
Adobe PDF
|
1.52 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.