Solid oxide photoelectrochemical cells (SOPECs) with inorganic ion-conducting electrolytes provide an alternative solution for light harvesting and conversion. Exploring potential photoelectrodes for SOPECs and understanding their operation mechanisms are crucial for continuously developing this technology. Here, ceria-based thin films were newly explored as photoelectrodes for SOPEC applications. It was found that the photoresponse of ceria-based thin films can be tuned both by Sm-doping-induced defects and by the heating temperature of SOPECs. The whole process was found to depend on the surface electrochemical redox reactions synergistically with the bulk photoelectric effect. Samarium doping level can selectively switch the open-circuit voltages polarity of SOPECs under illumination, thus shifting the potential of photoelectrodes and changing their photoresponse. The role of defect chemistry engineering in determining such a photoelectrochemical process was discussed. Transient absorption and X-ray photoemission spectroscopies, together with the state-of-the-art in operando X-ray absorption spectroscopy, allowed us to provide a compelling explanation of the experimentally observed switching behavior on the basis of the surface reactions and successive charge balance in the bulk.

Shi, Y., Wang, L., Wang, Z., Vinai, G., Braglia, L., Torelli, P., et al. (2021). Defect engineering for tuning the photoresponse of ceria-based solid oxide photoelectrochemical cells. ACS APPLIED MATERIALS & INTERFACES, 13(1), 541-551 [10.1021/acsami.0c17921].

Defect engineering for tuning the photoresponse of ceria-based solid oxide photoelectrochemical cells

Aruta C.;Traversa E.;Yang N.
2021-01-01

Abstract

Solid oxide photoelectrochemical cells (SOPECs) with inorganic ion-conducting electrolytes provide an alternative solution for light harvesting and conversion. Exploring potential photoelectrodes for SOPECs and understanding their operation mechanisms are crucial for continuously developing this technology. Here, ceria-based thin films were newly explored as photoelectrodes for SOPEC applications. It was found that the photoresponse of ceria-based thin films can be tuned both by Sm-doping-induced defects and by the heating temperature of SOPECs. The whole process was found to depend on the surface electrochemical redox reactions synergistically with the bulk photoelectric effect. Samarium doping level can selectively switch the open-circuit voltages polarity of SOPECs under illumination, thus shifting the potential of photoelectrodes and changing their photoresponse. The role of defect chemistry engineering in determining such a photoelectrochemical process was discussed. Transient absorption and X-ray photoemission spectroscopies, together with the state-of-the-art in operando X-ray absorption spectroscopy, allowed us to provide a compelling explanation of the experimentally observed switching behavior on the basis of the surface reactions and successive charge balance in the bulk.
2021
Pubblicato
Rilevanza internazionale
Articolo
Esperti anonimi
Settore ING-IND/22 - SCIENZA E TECNOLOGIA DEI MATERIALI
English
defect chemistry engineering
doped ceria
solar-to-chemical energy conversion
solid oxide photoelectrochemical cell
thin films
Shi, Y., Wang, L., Wang, Z., Vinai, G., Braglia, L., Torelli, P., et al. (2021). Defect engineering for tuning the photoresponse of ceria-based solid oxide photoelectrochemical cells. ACS APPLIED MATERIALS & INTERFACES, 13(1), 541-551 [10.1021/acsami.0c17921].
Shi, Y; Wang, L; Wang, Z; Vinai, G; Braglia, L; Torelli, P; Aruta, C; Traversa, E; Liu, W; Yang, N
Articolo su rivista
File in questo prodotto:
File Dimensione Formato  
acsami.0c17921.pdf

solo utenti autorizzati

Tipologia: Versione Editoriale (PDF)
Licenza: Copyright dell'editore
Dimensione 5.06 MB
Formato Adobe PDF
5.06 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2108/292569
Citazioni
  • ???jsp.display-item.citation.pmc??? 0
  • Scopus 13
  • ???jsp.display-item.citation.isi??? 13
social impact