Grimaldi and Cammarata et al. develop a proteomics-based, target discovery platform to identify immunogenic proteins specific to apoptotic tumor cells. This study highlights the importance of protein modifications in apoptotic tumor cells as a mechanism of generating immunogenic neoantigens that can be targeted for T cell-based immunotherapy.Here, we developed an unbiased, functional target-discovery platform to identify immunogenic proteins from primary non-small cell lung cancer (NSCLC) cells that had been induced to apoptosis by cisplatin (CDDP) treatment in vitro, as compared with their live counterparts. Among the multitude of proteins identified, some of them were represented as fragmented proteins in apoptotic tumor cells, and acted as non-mutated neoantigens (NM-neoAgs). Indeed, only the fragmented proteins elicited effective multi-specific CD4(+) and CD8(+) T cell responses, upon a chemotherapy protocol including CDDP. Importantly, these responses further increased upon anti-PD-1 therapy, and correlated with patients' survival and decreased PD-1 expression. Cross-presentation assays showed that NM-neoAgs were unveiled in apoptotic tumor cells as the result of caspase-dependent proteolytic activity of cellular proteins. Our study demonstrates that apoptotic tumor cells generate a repertoire of immunogenic NM-neoAgs that could be potentially used for developing effective T cell-based immunotherapy across multiple cancer patients.
Grimaldi, A., Cammarata, I., Martire, C., Focaccetti, C., Piconese, S., Buccilli, M., et al. (2020). Combination of chemotherapy and PD-1 blockade induces T cell responses to tumor non-mutated neoantigens. COMMUNICATIONS BIOLOGY, 3(1), 85 [10.1038/s42003-020-0811-x].
Combination of chemotherapy and PD-1 blockade induces T cell responses to tumor non-mutated neoantigens
Focaccetti C.;
2020-01-01
Abstract
Grimaldi and Cammarata et al. develop a proteomics-based, target discovery platform to identify immunogenic proteins specific to apoptotic tumor cells. This study highlights the importance of protein modifications in apoptotic tumor cells as a mechanism of generating immunogenic neoantigens that can be targeted for T cell-based immunotherapy.Here, we developed an unbiased, functional target-discovery platform to identify immunogenic proteins from primary non-small cell lung cancer (NSCLC) cells that had been induced to apoptosis by cisplatin (CDDP) treatment in vitro, as compared with their live counterparts. Among the multitude of proteins identified, some of them were represented as fragmented proteins in apoptotic tumor cells, and acted as non-mutated neoantigens (NM-neoAgs). Indeed, only the fragmented proteins elicited effective multi-specific CD4(+) and CD8(+) T cell responses, upon a chemotherapy protocol including CDDP. Importantly, these responses further increased upon anti-PD-1 therapy, and correlated with patients' survival and decreased PD-1 expression. Cross-presentation assays showed that NM-neoAgs were unveiled in apoptotic tumor cells as the result of caspase-dependent proteolytic activity of cellular proteins. Our study demonstrates that apoptotic tumor cells generate a repertoire of immunogenic NM-neoAgs that could be potentially used for developing effective T cell-based immunotherapy across multiple cancer patients.File | Dimensione | Formato | |
---|---|---|---|
21.Grimaldi Cammarata-2020-Comm Biol-Combination of chemotherapy and PD-1 blockade.pdf
accesso aperto
Tipologia:
Versione Editoriale (PDF)
Licenza:
Creative commons
Dimensione
1.75 MB
Formato
Adobe PDF
|
1.75 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.