In this article, we prove that, for any cluster of extra-logical assumptions, there exists exactly one axiomatic (i.e. minimal) extension of classical propositional logic that admits cut elimination. As a corollary, it follows that classically equivalent formulas share the same axiomatization. The moral is that cut elimination "flattens" the specific information encoded by the logical structure of proper axioms.

Piazza, M., Pulcini, G. (2016). Uniqueness of axiomatic extensions of cut-free classical propositional logic. LOGIC JOURNAL OF THE IGPL, 24(5), 708-718 [10.1093/jigpal/jzw032].

Uniqueness of axiomatic extensions of cut-free classical propositional logic

Pulcini G.
2016-01-01

Abstract

In this article, we prove that, for any cluster of extra-logical assumptions, there exists exactly one axiomatic (i.e. minimal) extension of classical propositional logic that admits cut elimination. As a corollary, it follows that classically equivalent formulas share the same axiomatization. The moral is that cut elimination "flattens" the specific information encoded by the logical structure of proper axioms.
2016
Pubblicato
Rilevanza internazionale
Articolo
Esperti anonimi
Settore M-FIL/02 - LOGICA E FILOSOFIA DELLA SCIENZA
Settore MAT/01 - LOGICA MATEMATICA
English
Axiomatic extensions
Cut elimination with proper axioms
Logic of pivotal assumptions
Proof theory
Piazza, M., Pulcini, G. (2016). Uniqueness of axiomatic extensions of cut-free classical propositional logic. LOGIC JOURNAL OF THE IGPL, 24(5), 708-718 [10.1093/jigpal/jzw032].
Piazza, M; Pulcini, G
Articolo su rivista
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2108/291757
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 7
  • ???jsp.display-item.citation.isi??? ND
social impact