We prove and conjecture results which show that Castelnuovo theory in projective space has a close analogue for abelian varieties. This is related to the geometric Schottky problem: our main result is that a principally polarized abelian variety satisfies a precise version of the Castelnuovo Lemma if and only if it is a Jacobian. This result has a surprising connection to the Trisecant Conjecture. We also give a genus bound for curves in abelian varieties.

Pareschi, G., Popa, M. (2008). Castelnuovo theory and the geometric Schottky problem. JOURNAL FÜR DIE REINE UND ANGEWANDTE MATHEMATIK, 615(615), 25-44 [10.1515/CRELLE.2008.008].

Castelnuovo theory and the geometric Schottky problem

PARESCHI, GIUSEPPE;
2008-01-01

Abstract

We prove and conjecture results which show that Castelnuovo theory in projective space has a close analogue for abelian varieties. This is related to the geometric Schottky problem: our main result is that a principally polarized abelian variety satisfies a precise version of the Castelnuovo Lemma if and only if it is a Jacobian. This result has a surprising connection to the Trisecant Conjecture. We also give a genus bound for curves in abelian varieties.
2008
Pubblicato
Rilevanza internazionale
Articolo
Sì, ma tipo non specificato
Settore MAT/03 - GEOMETRIA
English
Con Impact Factor ISI
ABELIAN-VARIETIES; JACOBIANS,
Pareschi, G., Popa, M. (2008). Castelnuovo theory and the geometric Schottky problem. JOURNAL FÜR DIE REINE UND ANGEWANDTE MATHEMATIK, 615(615), 25-44 [10.1515/CRELLE.2008.008].
Pareschi, G; Popa, M
Articolo su rivista
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2108/29160
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 8
  • ???jsp.display-item.citation.isi??? 7
social impact