We revisit real-valued preconditioned iterative methods for the solution of complex linear systems, with an emphasis on symmetric (non-Hermitian) problems. Different choices of the real equivalent formulation are discussed, as well as different types of block preconditioners for Krylov subspace methods. We argue that if either the real or the symmetric part of the coefficient matrix is positive semidefinite, block preconditioners for real equivalent formulations may be a useful alternative to preconditioners for the original complex formulation. Numerical experiments illustrating the performance of the various approaches are presented.

Benzi, M., Bertaccini, D. (2008). Block preconditioning of real-valued iterative algorithms for complex linear systems. IMA JOURNAL OF NUMERICAL ANALYSIS, 28(3), 598-618 [10.1093/imanum/drm039].

Block preconditioning of real-valued iterative algorithms for complex linear systems

BERTACCINI, DANIELE
2008-01-01

Abstract

We revisit real-valued preconditioned iterative methods for the solution of complex linear systems, with an emphasis on symmetric (non-Hermitian) problems. Different choices of the real equivalent formulation are discussed, as well as different types of block preconditioners for Krylov subspace methods. We argue that if either the real or the symmetric part of the coefficient matrix is positive semidefinite, block preconditioners for real equivalent formulations may be a useful alternative to preconditioners for the original complex formulation. Numerical experiments illustrating the performance of the various approaches are presented.
2008
Pubblicato
Rilevanza internazionale
Articolo
Esperti anonimi
Settore MAT/08 - ANALISI NUMERICA
English
Con Impact Factor ISI
Block preconditioners; Complex symmetric systems; Helmholtz equation; Krylov subspace methods; Schur complement
http://imajna.oxfordjournals.org/content/28/3/598.full.pdf+html
Benzi, M., Bertaccini, D. (2008). Block preconditioning of real-valued iterative algorithms for complex linear systems. IMA JOURNAL OF NUMERICAL ANALYSIS, 28(3), 598-618 [10.1093/imanum/drm039].
Benzi, M; Bertaccini, D
Articolo su rivista
File in questo prodotto:
File Dimensione Formato  
IMAJNA08-598.pdf

accesso aperto

Dimensione 423.51 kB
Formato Adobe PDF
423.51 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2108/29117
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 161
  • ???jsp.display-item.citation.isi??? 158
social impact