Combining microfluidics technology with machine learning represents an innovative approach to conduct massive quantitative cell behavior study and implement smart decision-making systems in support of clinical diagnostics. The spleen plays a key-role in rare hereditary hemolytic anemia (RHHA), being the organ responsible for the premature removal of defective red blood cells (RBCs). The goal is to adapt the physiological spleen filtering strategy for in vitro study and monitoring of blood diseases through RBCs shape analysis. Then, a microfluidic device mimicking the slits of the spleen red pulp area and video data analysis are combined for the characterization of RBCs in RHHA. This microfluidic unit is designed to evaluate RBC deformability by maintaining them fixed in planar orientation, allowing the visual inspection of RBC’s capacity to restore their original shape after crossing microconstrictions. Then, two cooperative learning approaches are used for the analysis: the majority voting scheme, in which the most voted label for all the cell images is the class assigned to the entire video; and the maximum sum of scores to decide the maximally scored class to assign. The proposed platform shows the capability to discriminate healthy controls and patients with an average efficiency of 91%, but also to distinguish between RHHA subtypes, with an efficiency of 82%.

Rizzuto, V., Mencattini, A., Alvarez-Gonzalez, B., Di Giuseppe, D., Martinelli, E., Beneitez-Pastor, D., et al. (2021). Combining microfluidics with machine learning algorithms for RBC classification in rare hereditary hemolytic anemia. SCIENTIFIC REPORTS, 11(1), 13553 [10.1038/s41598-021-92747-2].

Combining microfluidics with machine learning algorithms for RBC classification in rare hereditary hemolytic anemia

Mencattini A.;Martinelli E.;
2021-01-01

Abstract

Combining microfluidics technology with machine learning represents an innovative approach to conduct massive quantitative cell behavior study and implement smart decision-making systems in support of clinical diagnostics. The spleen plays a key-role in rare hereditary hemolytic anemia (RHHA), being the organ responsible for the premature removal of defective red blood cells (RBCs). The goal is to adapt the physiological spleen filtering strategy for in vitro study and monitoring of blood diseases through RBCs shape analysis. Then, a microfluidic device mimicking the slits of the spleen red pulp area and video data analysis are combined for the characterization of RBCs in RHHA. This microfluidic unit is designed to evaluate RBC deformability by maintaining them fixed in planar orientation, allowing the visual inspection of RBC’s capacity to restore their original shape after crossing microconstrictions. Then, two cooperative learning approaches are used for the analysis: the majority voting scheme, in which the most voted label for all the cell images is the class assigned to the entire video; and the maximum sum of scores to decide the maximally scored class to assign. The proposed platform shows the capability to discriminate healthy controls and patients with an average efficiency of 91%, but also to distinguish between RHHA subtypes, with an efficiency of 82%.
2021
Pubblicato
Rilevanza internazionale
Articolo
Esperti anonimi
Settore ING-INF/07 - MISURE ELETTRICHE ED ELETTRONICHE
English
Erythrocyte Deformability
Female
Humans
Male
Anemia, Hemolytic, Congenital
Erythrocytes
Image Processing, Computer-Assisted
Lab-On-A-Chip Devices
Machine Learning
Microfluidic Analytical Techniques
Rizzuto, V., Mencattini, A., Alvarez-Gonzalez, B., Di Giuseppe, D., Martinelli, E., Beneitez-Pastor, D., et al. (2021). Combining microfluidics with machine learning algorithms for RBC classification in rare hereditary hemolytic anemia. SCIENTIFIC REPORTS, 11(1), 13553 [10.1038/s41598-021-92747-2].
Rizzuto, V; Mencattini, A; Alvarez-Gonzalez, B; Di Giuseppe, D; Martinelli, E; Beneitez-Pastor, D; Manu-Pereira, Mm; Lopez-Martinez, Mj; Samitier, J...espandi
Articolo su rivista
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2108/289493
Citazioni
  • ???jsp.display-item.citation.pmc??? 3
  • Scopus 34
  • ???jsp.display-item.citation.isi??? 34
social impact