In this paper we introduce, via a Phragmén-Lindelöf type theorem, a maximal plurisubharmonic function in a strongly pseudoconvex domain. We call such a function the pluricomplex Poisson kernel because it shares many properties with the classical Poisson kernel of the unit disc. In particular, we show that such a function is continuous, it is zero on the boundary except at one boundary point where it has a non-tangential simple pole, and reproduces pluriharmonic functions. We also use such a function to obtain a new “intrinsic” version of the classical Julia's Lemma and Julia-Wolff-Carathéodory's Theorem.

Bracci, F., Saracco, A., Trapani, S. (2021). The pluricomplex Poisson kernel for strongly pseudoconvex domains. ADVANCES IN MATHEMATICS, 380 [10.1016/j.aim.2021.107577].

The pluricomplex Poisson kernel for strongly pseudoconvex domains

Bracci, Filippo;Saracco, Alberto;Trapani, Stefano
2021

Abstract

In this paper we introduce, via a Phragmén-Lindelöf type theorem, a maximal plurisubharmonic function in a strongly pseudoconvex domain. We call such a function the pluricomplex Poisson kernel because it shares many properties with the classical Poisson kernel of the unit disc. In particular, we show that such a function is continuous, it is zero on the boundary except at one boundary point where it has a non-tangential simple pole, and reproduces pluriharmonic functions. We also use such a function to obtain a new “intrinsic” version of the classical Julia's Lemma and Julia-Wolff-Carathéodory's Theorem.
Pubblicato
Rilevanza internazionale
Articolo
Esperti anonimi
Settore MAT/03
English
Con Impact Factor ISI
Pluripotential theory; pluricomplex Poisson kernel; holomorphic dynamics; strongly pseudoconvex domains
https://www.sciencedirect.com/science/article/abs/pii/S0001870821000153?via=ihub
Bracci, F., Saracco, A., Trapani, S. (2021). The pluricomplex Poisson kernel for strongly pseudoconvex domains. ADVANCES IN MATHEMATICS, 380 [10.1016/j.aim.2021.107577].
Bracci, F; Saracco, A; Trapani, S
Articolo su rivista
File in questo prodotto:
File Dimensione Formato  
pluricomplex.pdf

non disponibili

Tipologia: Versione Editoriale (PDF)
Licenza: Copyright dell'editore
Dimensione 656.87 kB
Formato Adobe PDF
656.87 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2108/289258
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 5
  • ???jsp.display-item.citation.isi??? 5
social impact