In this paper we introduce, via a Phragmén-Lindelöf type theorem, a maximal plurisubharmonic function in a strongly pseudoconvex domain. We call such a function the pluricomplex Poisson kernel because it shares many properties with the classical Poisson kernel of the unit disc. In particular, we show that such a function is continuous, it is zero on the boundary except at one boundary point where it has a non-tangential simple pole, and reproduces pluriharmonic functions. We also use such a function to obtain a new “intrinsic” version of the classical Julia's Lemma and Julia-Wolff-Carathéodory's Theorem.
Bracci, F., Saracco, A., Trapani, S. (2021). The pluricomplex Poisson kernel for strongly pseudoconvex domains. ADVANCES IN MATHEMATICS, 380 [10.1016/j.aim.2021.107577].
The pluricomplex Poisson kernel for strongly pseudoconvex domains
Bracci, Filippo;Saracco, Alberto;Trapani, Stefano
2021-03-26
Abstract
In this paper we introduce, via a Phragmén-Lindelöf type theorem, a maximal plurisubharmonic function in a strongly pseudoconvex domain. We call such a function the pluricomplex Poisson kernel because it shares many properties with the classical Poisson kernel of the unit disc. In particular, we show that such a function is continuous, it is zero on the boundary except at one boundary point where it has a non-tangential simple pole, and reproduces pluriharmonic functions. We also use such a function to obtain a new “intrinsic” version of the classical Julia's Lemma and Julia-Wolff-Carathéodory's Theorem.File | Dimensione | Formato | |
---|---|---|---|
pluricomplex.pdf
solo utenti autorizzati
Tipologia:
Versione Editoriale (PDF)
Licenza:
Copyright dell'editore
Dimensione
656.87 kB
Formato
Adobe PDF
|
656.87 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.