Soft glassy materials such as mayonnaise, wet clays, or dense microgels display a solid-to-liquid transition under external shear. Such a shear-induced transition is often associated with a nonmonotonic stress response in the form of a stress maximum referred to as “stress overshoot.” This ubiquitous phenomenon is characterized by the coordinates of the maximum in terms of stress ${\sigma_M}$ and strain ${\gamma_M}$that both increase as weak power laws of the applied shear rate. Here we rationalize such power-law scalings using a continuum model that predicts two different regimes in the limit of low and high applied shear rates. The corresponding exponents are directly linked to the steady-state rheology and are both associated with the nucleation and growth dynamics of a fluidized region. Our work offers a consistent framework for predicting the transient response of soft glassy materials upon startup of shear from the local flow behavior to the global rheological observables.

Benzi, R., Divoux, T., Barentin, C., Manneville, S., Sbragaglia, M., Toschi, F. (2021). Stress overshoots in simple yield stress fluids. PHYSICAL REVIEW LETTERS, 127(14) [10.1103/PhysRevLett.127.148003].

Stress overshoots in simple yield stress fluids

Benzi, Roberto;Sbragaglia, Mauro;
2021-01-01

Abstract

Soft glassy materials such as mayonnaise, wet clays, or dense microgels display a solid-to-liquid transition under external shear. Such a shear-induced transition is often associated with a nonmonotonic stress response in the form of a stress maximum referred to as “stress overshoot.” This ubiquitous phenomenon is characterized by the coordinates of the maximum in terms of stress ${\sigma_M}$ and strain ${\gamma_M}$that both increase as weak power laws of the applied shear rate. Here we rationalize such power-law scalings using a continuum model that predicts two different regimes in the limit of low and high applied shear rates. The corresponding exponents are directly linked to the steady-state rheology and are both associated with the nucleation and growth dynamics of a fluidized region. Our work offers a consistent framework for predicting the transient response of soft glassy materials upon startup of shear from the local flow behavior to the global rheological observables.
2021
Pubblicato
Rilevanza internazionale
Articolo
Esperti anonimi
Settore FIS/02 - FISICA TEORICA, MODELLI E METODI MATEMATICI
Settore PHYS-02/A - Fisica teorica delle interazioni fondamentali, modelli, metodi matematici e applicazioni
English
Con Impact Factor ISI
Soft Glassy Materials, Fluidity Models, Stress Response and "Overshoot"
Benzi, R., Divoux, T., Barentin, C., Manneville, S., Sbragaglia, M., Toschi, F. (2021). Stress overshoots in simple yield stress fluids. PHYSICAL REVIEW LETTERS, 127(14) [10.1103/PhysRevLett.127.148003].
Benzi, R; Divoux, T; Barentin, C; Manneville, S; Sbragaglia, M; Toschi, F
Articolo su rivista
File in questo prodotto:
File Dimensione Formato  
Benzietal21_PRL.pdf

accesso aperto

Tipologia: Documento in Pre-print
Licenza: Non specificato
Dimensione 491.1 kB
Formato Adobe PDF
491.1 kB Adobe PDF Visualizza/Apri
Benzietal_Overshoot_PRL_21.pdf

solo utenti autorizzati

Tipologia: Versione Editoriale (PDF)
Licenza: Copyright dell'editore
Dimensione 561.34 kB
Formato Adobe PDF
561.34 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2108/289157
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 27
  • ???jsp.display-item.citation.isi??? 26
social impact