The tattoos removal has become an issue upon spread of the tattooing practice worldwide and hindsight regrets. Lasers are typically used for the purpose, though some colours such as green are considered “recalcitrant” to the treatment. In the current investigation, we aim at determining the efcacy of removal of a green ink water dispersion, using 5 laser treatments: Nd:YAG nano- and picosecond lasers in normal and array mode and Ruby nanosecond laser, keeping the total irradiated energy constant. The UV–Vis spectroscopy of the treated samples indicate that Nd:YAG picosecond laser is most efective, and the Ruby nanosecond laser is the least efcient. Fragment compounds generated from the pigment and siloxanes are common to all treatments, whereas hydrocarbon emerge by a larger amount upon Nd:YAG nanosecond treatment. Fibres are formed upon picosecond treatments and when operating in array mode, and lamellae are achieved by Ruby nanosecond laser treatment. Residual particles suspensions are very heterogeneous upon nanosecond treatments.
Cecchetti, D., Bauer, E.m., Guerriero, E., Sennato, S., Tagliatesta, P., Tagliaferri, M., et al. (2022). Comparative treatments of a green tattoo ink with Ruby, Nd: YAG nano- and picosecond lasers in normal and array mode. SCIENTIFIC REPORTS, 12(1) [10.1038/s41598-022-07021-w].
Comparative treatments of a green tattoo ink with Ruby, Nd: YAG nano- and picosecond lasers in normal and array mode
Tagliatesta, Pietro;Carbone, Marilena
2022-01-01
Abstract
The tattoos removal has become an issue upon spread of the tattooing practice worldwide and hindsight regrets. Lasers are typically used for the purpose, though some colours such as green are considered “recalcitrant” to the treatment. In the current investigation, we aim at determining the efcacy of removal of a green ink water dispersion, using 5 laser treatments: Nd:YAG nano- and picosecond lasers in normal and array mode and Ruby nanosecond laser, keeping the total irradiated energy constant. The UV–Vis spectroscopy of the treated samples indicate that Nd:YAG picosecond laser is most efective, and the Ruby nanosecond laser is the least efcient. Fragment compounds generated from the pigment and siloxanes are common to all treatments, whereas hydrocarbon emerge by a larger amount upon Nd:YAG nanosecond treatment. Fibres are formed upon picosecond treatments and when operating in array mode, and lamellae are achieved by Ruby nanosecond laser treatment. Residual particles suspensions are very heterogeneous upon nanosecond treatments.File | Dimensione | Formato | |
---|---|---|---|
110 Sci Rep 2022 inks lasers .pdf
accesso aperto
Tipologia:
Versione Editoriale (PDF)
Licenza:
Creative commons
Dimensione
1.52 MB
Formato
Adobe PDF
|
1.52 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.