14-3-3 proteins modulate the plant inward rectifier K+ channel KAT1 heterologously expressed in Xenopus oocytes. Injection of recombinant plant 14-3-3 proteins into oocytes shifted the activation curve of KAT1 by + 11 mV and increased the tau on. KAT1 was also modulated by 14-3-3 proteins of Xenopus oocytes. Titration of the endogenous 14-3-3 proteins by injection of the peptide Raf 621p resulted in a strong decrease in KAT1 current (similar to 70% at -150 mV). The mutation K56E performed on plant protein 14-3-3 in a highly conserved recognition site prevented channel activation. Because the maximal conductance of KAT1 was unaffected by 14-3-3, we can exclude that they act by increasing the number of channels, thus ruling out any effect of these proteins on channel trafficking and/or insertion into the oocyte membrane. 14-3-3 proteins also increased KAT1 current in inside-out patches, suggesting a direct interaction with the channel. Direct interaction was confirmed by overlay experiments with radioactive 14-3-3 on oocyte membranes expressing KAT1.

Sottocornola, B., Visconti, S., Orsi, S., Gazzarrini, S., Giacometti, S., Olivari, C., et al. (2006). The potassium channel KAT1 is activated by plant and animal 14-3-3 proteins. THE JOURNAL OF BIOLOGICAL CHEMISTRY, 281(47), 35735-35741 [10.1074/jbc.M603361200].

The potassium channel KAT1 is activated by plant and animal 14-3-3 proteins

VISCONTI, SABINA;CAMONI, LORENZO;ADUCCI, PATRIZIA;MARRA, MAURO;
2006

Abstract

14-3-3 proteins modulate the plant inward rectifier K+ channel KAT1 heterologously expressed in Xenopus oocytes. Injection of recombinant plant 14-3-3 proteins into oocytes shifted the activation curve of KAT1 by + 11 mV and increased the tau on. KAT1 was also modulated by 14-3-3 proteins of Xenopus oocytes. Titration of the endogenous 14-3-3 proteins by injection of the peptide Raf 621p resulted in a strong decrease in KAT1 current (similar to 70% at -150 mV). The mutation K56E performed on plant protein 14-3-3 in a highly conserved recognition site prevented channel activation. Because the maximal conductance of KAT1 was unaffected by 14-3-3, we can exclude that they act by increasing the number of channels, thus ruling out any effect of these proteins on channel trafficking and/or insertion into the oocyte membrane. 14-3-3 proteins also increased KAT1 current in inside-out patches, suggesting a direct interaction with the channel. Direct interaction was confirmed by overlay experiments with radioactive 14-3-3 on oocyte membranes expressing KAT1.
Pubblicato
Rilevanza internazionale
Articolo
Sì, ma tipo non specificato
Settore BIO/04
English
Con Impact Factor ISI
Potassium channel; 14-3-3 proteins; plant plasma membrane; protein-protein interaction
Sottocornola, B., Visconti, S., Orsi, S., Gazzarrini, S., Giacometti, S., Olivari, C., et al. (2006). The potassium channel KAT1 is activated by plant and animal 14-3-3 proteins. THE JOURNAL OF BIOLOGICAL CHEMISTRY, 281(47), 35735-35741 [10.1074/jbc.M603361200].
Sottocornola, B; Visconti, S; Orsi, S; Gazzarrini, S; Giacometti, S; Olivari, C; Camoni, L; Aducci, P; Marra, M; Abenavoli, A; Thiel, G; Moroni, A
Articolo su rivista
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/2108/28890
Citazioni
  • ???jsp.display-item.citation.pmc??? 23
  • Scopus ND
  • ???jsp.display-item.citation.isi??? 51
social impact