A competition-diffusion system, where populations of healthy and malignant cells compete and move on a neutral matrix, is analyzed. A coupled system of degenerate nonlinear parabolic equations is derived through a scaling procedure from the microscopic, Markovian dynamics. The healthy cells move much slower than the malignant ones, such that no diffusion for their density survives in the limit.The malignant cells may locally accumulate, while for the healthy ones an exclusion rule is considered. The asymptotic behavior of the system can be partially described through the analysis of the stationary wave which connects different equilibria.

Luckhaus, S., Triolo, L. (2004). The continuum reaction-diffusion limit of a stochastic cellular growth model. ATTI DELLA ACCADEMIA NAZIONALE DEI LINCEI. RENDICONTI LINCEI. MATEMATICA E APPLICAZIONI, 15(3-4), 215-223.

The continuum reaction-diffusion limit of a stochastic cellular growth model

TRIOLO, LIVIO
2004-01-01

Abstract

A competition-diffusion system, where populations of healthy and malignant cells compete and move on a neutral matrix, is analyzed. A coupled system of degenerate nonlinear parabolic equations is derived through a scaling procedure from the microscopic, Markovian dynamics. The healthy cells move much slower than the malignant ones, such that no diffusion for their density survives in the limit.The malignant cells may locally accumulate, while for the healthy ones an exclusion rule is considered. The asymptotic behavior of the system can be partially described through the analysis of the stationary wave which connects different equilibria.
2004
Pubblicato
Rilevanza internazionale
Articolo
Sì, ma tipo non specificato
Settore MAT/07 - FISICA MATEMATICA
English
Con Impact Factor ISI
tumor growth model; hydrodynamic limit: degenerate reaction-diffusion system
http://www.mat.uniroma2.it/~triolo/trio0302.pdf
Luckhaus, S., Triolo, L. (2004). The continuum reaction-diffusion limit of a stochastic cellular growth model. ATTI DELLA ACCADEMIA NAZIONALE DEI LINCEI. RENDICONTI LINCEI. MATEMATICA E APPLICAZIONI, 15(3-4), 215-223.
Luckhaus, S; Triolo, L
Articolo su rivista
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2108/28888
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact