We consider, in an open subset Omega of R-N, energies depending on the perimeter of a subset E is an element of Omega ( or some equivalent surface integral) and on a function u which is defined only on Omega\E. We compute the lower semicontinuous envelope of such energies. This relaxation has to take into account the fact that in the limit, the "holes" E may collapse into a discontinuity of u, whose surface will be counted twice in the relaxed energy. We discuss some situations where such energies appear, and give, as an application, a new proof of convergence for an extension of Ambrosio-Tortorelli's approximation to the Mumford- Shah functional.

Braides, A., Chambolle, A., Solci, M. (2007). A relaxation result for energies defined on pairs set-function and applications. ESAIM. COCV, 13(4), 717-734 [10.1051/cocv:2007032].

A relaxation result for energies defined on pairs set-function and applications

BRAIDES, ANDREA;
2007-01-01

Abstract

We consider, in an open subset Omega of R-N, energies depending on the perimeter of a subset E is an element of Omega ( or some equivalent surface integral) and on a function u which is defined only on Omega\E. We compute the lower semicontinuous envelope of such energies. This relaxation has to take into account the fact that in the limit, the "holes" E may collapse into a discontinuity of u, whose surface will be counted twice in the relaxed energy. We discuss some situations where such energies appear, and give, as an application, a new proof of convergence for an extension of Ambrosio-Tortorelli's approximation to the Mumford- Shah functional.
2007
Pubblicato
Rilevanza internazionale
Articolo
Sì, ma tipo non specificato
Settore MAT/05 - ANALISI MATEMATICA
English
Con Impact Factor ISI
relaxation; free discontinuity problems; Gamma-convergence
Braides, A., Chambolle, A., Solci, M. (2007). A relaxation result for energies defined on pairs set-function and applications. ESAIM. COCV, 13(4), 717-734 [10.1051/cocv:2007032].
Braides, A; Chambolle, A; Solci, M
Articolo su rivista
File in questo prodotto:
File Dimensione Formato  
cocv0586.pdf

accesso aperto

Dimensione 251.45 kB
Formato Adobe PDF
251.45 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2108/28854
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 26
  • ???jsp.display-item.citation.isi??? 26
social impact