In the framework of the asymptotic analysis of thin structures, we prove that, up to an extraction, it is possible to decompose a sequence of 'scaled gradients' (del(alpha)u(epsilon)vertical bar(1)/(epsilon)del(beta)u(epsilon)) (where is the gradient in the k-dimensional 'thin variable' x(beta)) bounded in L-p (Omega:R-mxn(1 < p < + infinity) as a sum of a sequence (del(alpha)v(epsilon)vertical bar(1)/(epsilon)del(beta)nu(epsilon)) whose p-th power is equi-integrable on Omega and a 'rest' that converges to zero in measure. In particular, for k = 1 we recover a well-known result for thin films by Bocea and Fonseca (ESAIM: COCV 7:443-470; 2002).
Braides, A., & Zeppieri, C.I. (2007). A note on equi-integrability in dimension reduction problems. CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 29(2), 231-238.
Tipologia: | Articolo su rivista |
Citazione: | Braides, A., & Zeppieri, C.I. (2007). A note on equi-integrability in dimension reduction problems. CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 29(2), 231-238. |
Lingua: | English |
Settore Scientifico Disciplinare: | Settore MAT/05 - Analisi Matematica |
Revisione (peer review): | Sì, ma tipo non specificato |
Tipo: | Articolo |
Rilevanza: | Rilevanza internazionale |
Digital Object Identifier (DOI): | http://dx.doi.org/10.1007/s00526-006-0065-6 |
Stato di pubblicazione: | Pubblicato |
Data di pubblicazione: | 2007 |
Titolo: | A note on equi-integrability in dimension reduction problems |
Autori: | |
Autori: | Braides, A ; Zeppieri, CI |
Appare nelle tipologie: | 01 - Articolo su rivista |