We study the geometric and approximation properties of Marcinkiewicz spaces and Stepanoff spaces, $1 \leq p < \infty$, as well as others where translations are not isometric but bounded (the bounded $p$-mean spaces) or even unbounded ($\Mean0$). We construct a function $f$ that belongs to these spaces and has the unusual and unexpected property that all approximate identities $\phi_\varepsilon*f$ converge to $f$ pointwise but they never converge in norm.

Andreano, F., Picardello, A.m. (2009). Approximate identities on some homogeneous Banach spaces. MONATSHEFTE FÜR MATHEMATIK, 158, 235-246 [10.1007/s00605-009-0106-2].

Approximate identities on some homogeneous Banach spaces

PICARDELLO, ANGELO MASSIMO
2009-01-01

Abstract

We study the geometric and approximation properties of Marcinkiewicz spaces and Stepanoff spaces, $1 \leq p < \infty$, as well as others where translations are not isometric but bounded (the bounded $p$-mean spaces) or even unbounded ($\Mean0$). We construct a function $f$ that belongs to these spaces and has the unusual and unexpected property that all approximate identities $\phi_\varepsilon*f$ converge to $f$ pointwise but they never converge in norm.
2009
Pubblicato
Rilevanza internazionale
Articolo
Sì, ma tipo non specificato
Settore MAT/03 - GEOMETRIA
English
Marcinkiewicz spaces, Stepanoff spaces, bounded-p-means, approximate identities, bounded translations
Andreano, F., Picardello, A.m. (2009). Approximate identities on some homogeneous Banach spaces. MONATSHEFTE FÜR MATHEMATIK, 158, 235-246 [10.1007/s00605-009-0106-2].
Andreano, F; Picardello, Am
Articolo su rivista
File in questo prodotto:
File Dimensione Formato  
AndreanoPic.pdf

accesso aperto

Dimensione 194.35 kB
Formato Adobe PDF
194.35 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2108/28790
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 4
  • ???jsp.display-item.citation.isi??? 3
social impact