The impact of extra-low dosage (0.01% by weight of cement) Graphene Oxide (GO) on the properties of fresh and hardened nanocomposites was assessed. The use of a minimum amount of 2-D nanofiller would minimize costs and sustainability issues, therefore encouraging the market uptake of nanoengineered cement-based materials. GO was characterized by X-ray Photoelectron Spectroscopy (XPS), Fourier-transform infrared spectroscopy (FTIR), Atomic Force Microscopy (AFM), X-ray Diffraction (XRD), and Raman spectroscopy. GO consisted of stacked sheets up to 600 nm × 800 nm wide and 2 nm thick, oxygen content 31 at%. The impact of GO on the fresh admixtures was evaluated by rheology, flowability, and workability measurements. GO-modified samples were characterized by density measurements, Scanning Electron Microscopy (SEM) analysis, and compression and bending tests. Permeability was investigated using the boiling-water saturation technique, salt ponding test, and Initial Surface Absorption Test (ISAT). At 28 days, GO-nanocomposite exhibited increased density (+14%), improved compressive and flexural strength (+29% and +13%, respectively), and decreased permeability compared to the control sample. The strengthening effect dominated over the adverse effects associated with the worsening of the fresh properties; reduced permeability was mainly attributed to the refining of the pore network induced by the presence of GO.
Chougan, M., Lamastra, F.r., Bolli, E., Caschera, D., Kaciulis, S., Mazzuca, C., et al. (2021). Extra-low dosage graphene oxide cementitious nanocomposites: a nano- to macroscale approach. NANOMATERIALS, 11(12) [10.3390/nano11123278].
Extra-low dosage graphene oxide cementitious nanocomposites: a nano- to macroscale approach
Lamastra, Francesca Romana;Mazzuca, Claudia;Montesperelli, Giampiero;Bianco, Alessandra
2021-01-01
Abstract
The impact of extra-low dosage (0.01% by weight of cement) Graphene Oxide (GO) on the properties of fresh and hardened nanocomposites was assessed. The use of a minimum amount of 2-D nanofiller would minimize costs and sustainability issues, therefore encouraging the market uptake of nanoengineered cement-based materials. GO was characterized by X-ray Photoelectron Spectroscopy (XPS), Fourier-transform infrared spectroscopy (FTIR), Atomic Force Microscopy (AFM), X-ray Diffraction (XRD), and Raman spectroscopy. GO consisted of stacked sheets up to 600 nm × 800 nm wide and 2 nm thick, oxygen content 31 at%. The impact of GO on the fresh admixtures was evaluated by rheology, flowability, and workability measurements. GO-modified samples were characterized by density measurements, Scanning Electron Microscopy (SEM) analysis, and compression and bending tests. Permeability was investigated using the boiling-water saturation technique, salt ponding test, and Initial Surface Absorption Test (ISAT). At 28 days, GO-nanocomposite exhibited increased density (+14%), improved compressive and flexural strength (+29% and +13%, respectively), and decreased permeability compared to the control sample. The strengthening effect dominated over the adverse effects associated with the worsening of the fresh properties; reduced permeability was mainly attributed to the refining of the pore network induced by the presence of GO.File | Dimensione | Formato | |
---|---|---|---|
nanomaterials-11-03278_lamastra_2021.pdf
accesso aperto
Tipologia:
Versione Editoriale (PDF)
Licenza:
Creative commons
Dimensione
2.27 MB
Formato
Adobe PDF
|
2.27 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.