Spectropolarimetric observations of a solar pore at high temporal and spatial resolution identify the presence of magnetic field torsional oscillations. Simulations suggest that such oscillations are triggered by a photospheric kink mode, which can contribute substantially to upward energy transport within the solar atmosphere.Alfven waves have proven to be important in a range of physical systems due to their ability to transport non-thermal energy over long distances in a magnetized plasma. This property is of specific interest in solar physics, where the extreme heating of the atmosphere of the Sun remains unexplained. In an inhomogeneous plasma such as a flux tube in the solar atmosphere, they manifest as incompressible torsional perturbations. However, despite evidence in the upper atmosphere, they have not been directly observed in the photosphere. Here, we report the detection of antiphase incompressible torsional oscillations observed in a magnetic pore in the photosphere by the Interferometric Bidimensional Spectropolarimeter. State-of-the-art numerical simulations suggest that a kink mode is a possible excitation mechanism of these waves. The excitation of torsional waves in photospheric magnetic structures can substantially contribute to the energy transport in the solar atmosphere and the acceleration of the solar wind, especially if such signatures will be ubiquitously detected in even smaller structures with the forthcoming next generation of solar telescopes.
Stangalini, M., Erdelyi, R., Boocock, C., Tsiklauri, D., Nelson, C.j., Del Moro, D., et al. (2021). Torsional oscillations within a magnetic pore in the solar photosphere. NATURE ASTRONOMY, 5(7), 691-696 [10.1038/s41550-021-01354-8].
Torsional oscillations within a magnetic pore in the solar photosphere
Stangalini M.;Del Moro D.;Berrilli F.;
2021-01-01
Abstract
Spectropolarimetric observations of a solar pore at high temporal and spatial resolution identify the presence of magnetic field torsional oscillations. Simulations suggest that such oscillations are triggered by a photospheric kink mode, which can contribute substantially to upward energy transport within the solar atmosphere.Alfven waves have proven to be important in a range of physical systems due to their ability to transport non-thermal energy over long distances in a magnetized plasma. This property is of specific interest in solar physics, where the extreme heating of the atmosphere of the Sun remains unexplained. In an inhomogeneous plasma such as a flux tube in the solar atmosphere, they manifest as incompressible torsional perturbations. However, despite evidence in the upper atmosphere, they have not been directly observed in the photosphere. Here, we report the detection of antiphase incompressible torsional oscillations observed in a magnetic pore in the photosphere by the Interferometric Bidimensional Spectropolarimeter. State-of-the-art numerical simulations suggest that a kink mode is a possible excitation mechanism of these waves. The excitation of torsional waves in photospheric magnetic structures can substantially contribute to the energy transport in the solar atmosphere and the acceleration of the solar wind, especially if such signatures will be ubiquitously detected in even smaller structures with the forthcoming next generation of solar telescopes.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.