In this paper, we introduce and solve a class of optimal stopping problems of recursive type. In particular, the stopping payoff depends directly on the value function of the problem itself. In a multidimensional Markovian setting, we show that the problem is well posed in the sense that the value is indeed the unique solution to a fixed point problem in a suitable space of continuous functions, and an optimal stopping time exists. We then apply our class of problems to a model for stock trading in two different market venues, and we determine the optimal stopping rule in that case.

Colaneri, K., De Angelis, T. (2022). A Class of recursive optimal stopping problems with applications to stock trading. MATHEMATICS OF OPERATIONS RESEARCH, 47(3), 1833-1861 [10.1287/moor.2021.1190].

A Class of recursive optimal stopping problems with applications to stock trading

Colaneri, Katia;
2022-01-01

Abstract

In this paper, we introduce and solve a class of optimal stopping problems of recursive type. In particular, the stopping payoff depends directly on the value function of the problem itself. In a multidimensional Markovian setting, we show that the problem is well posed in the sense that the value is indeed the unique solution to a fixed point problem in a suitable space of continuous functions, and an optimal stopping time exists. We then apply our class of problems to a model for stock trading in two different market venues, and we determine the optimal stopping rule in that case.
2022
Pubblicato
Rilevanza internazionale
Articolo
Esperti anonimi
Settore SECS-S/06 - METODI MATEMATICI DELL'ECONOMIA E DELLE SCIENZE ATTUARIALI E FINANZIARIE
Settore MAT/06 - PROBABILITA' E STATISTICA MATEMATICA
English
optimal stopping theory
recursive optimal stopping problems
stock selling
Colaneri, K., De Angelis, T. (2022). A Class of recursive optimal stopping problems with applications to stock trading. MATHEMATICS OF OPERATIONS RESEARCH, 47(3), 1833-1861 [10.1287/moor.2021.1190].
Colaneri, K; De Angelis, T
Articolo su rivista
File in questo prodotto:
File Dimensione Formato  
moor.2021.1190.pdf

solo utenti autorizzati

Tipologia: Versione Editoriale (PDF)
Licenza: Copyright dell'editore
Dimensione 1.03 MB
Formato Adobe PDF
1.03 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2108/284686
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 0
social impact