We prove that the bimeromorphic class of a hyperkahler manifold deformation equivalent to O'Grady's six dimensional one is determined by the Hodge structure of its Beauville-Bogomolov lattice by showing that the monodromy group is maximal. As applications, we give the structure for the Kahler and the birational Kahler cones in this deformation class and we prove that the existence of a square zero divisor implies the existence a rational lagrangian fibration with fixed fibre types. (C) 2020 Elsevier Masson SAS. All rights reserved.

Mongardi, G., Rapagnetta, A. (2021). Monodromy and birational geometry of O'Grady's sixfolds. JOURNAL DE MATHÉMATIQUES PURES ET APPLIQUÉES, 146, 31-68 [10.1016/j.matpur.2020.12.006].

Monodromy and birational geometry of O'Grady's sixfolds

Rapagnetta, A
2021-01-01

Abstract

We prove that the bimeromorphic class of a hyperkahler manifold deformation equivalent to O'Grady's six dimensional one is determined by the Hodge structure of its Beauville-Bogomolov lattice by showing that the monodromy group is maximal. As applications, we give the structure for the Kahler and the birational Kahler cones in this deformation class and we prove that the existence of a square zero divisor implies the existence a rational lagrangian fibration with fixed fibre types. (C) 2020 Elsevier Masson SAS. All rights reserved.
2021
Pubblicato
Rilevanza internazionale
Articolo
Esperti anonimi
Settore MAT/03 - GEOMETRIA
English
O'Grady's sixfolds
Monodromy group
Ample cone
Lagrangian fibration
Mongardi, G., Rapagnetta, A. (2021). Monodromy and birational geometry of O'Grady's sixfolds. JOURNAL DE MATHÉMATIQUES PURES ET APPLIQUÉES, 146, 31-68 [10.1016/j.matpur.2020.12.006].
Mongardi, G; Rapagnetta, A
Articolo su rivista
File in questo prodotto:
File Dimensione Formato  
Articolo MR.pdf

solo utenti autorizzati

Descrizione: articolo
Tipologia: Versione Editoriale (PDF)
Licenza: Copyright dell'editore
Dimensione 767.97 kB
Formato Adobe PDF
767.97 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2108/284487
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 14
  • ???jsp.display-item.citation.isi??? 13
social impact