We prove that the bimeromorphic class of a hyperkahler manifold deformation equivalent to O'Grady's six dimensional one is determined by the Hodge structure of its Beauville-Bogomolov lattice by showing that the monodromy group is maximal. As applications, we give the structure for the Kahler and the birational Kahler cones in this deformation class and we prove that the existence of a square zero divisor implies the existence a rational lagrangian fibration with fixed fibre types. (C) 2020 Elsevier Masson SAS. All rights reserved.
Mongardi, G., Rapagnetta, A. (2021). Monodromy and birational geometry of O'Grady's sixfolds. JOURNAL DE MATHÉMATIQUES PURES ET APPLIQUÉES, 146, 31-68 [10.1016/j.matpur.2020.12.006].
Monodromy and birational geometry of O'Grady's sixfolds
Rapagnetta, A
2021-01-01
Abstract
We prove that the bimeromorphic class of a hyperkahler manifold deformation equivalent to O'Grady's six dimensional one is determined by the Hodge structure of its Beauville-Bogomolov lattice by showing that the monodromy group is maximal. As applications, we give the structure for the Kahler and the birational Kahler cones in this deformation class and we prove that the existence of a square zero divisor implies the existence a rational lagrangian fibration with fixed fibre types. (C) 2020 Elsevier Masson SAS. All rights reserved.File | Dimensione | Formato | |
---|---|---|---|
Articolo MR.pdf
solo utenti autorizzati
Descrizione: articolo
Tipologia:
Versione Editoriale (PDF)
Licenza:
Copyright dell'editore
Dimensione
767.97 kB
Formato
Adobe PDF
|
767.97 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.