This paper discusses the role of two-dimensional (2-D)/three-dimensional (3-D) cochlear fluid hydrodynamics in the generation of the large nonlinear dynamical range of the basilar membrane (BM) and pressure response, in the decoupling between cochlear gain and tuning, and in the dynamic stabilization of the high-gain BM response in the peak region. The large and closely correlated dependence on stimulus level of the BM velocity and fluid pressure gain [Dong, W., and Olson, E. S. (2013). Biophys. J. 105(4), 1067-1078] is consistent with a physiologically oriented schematization of the outer hair cell (OHC) mechanism if two hydrodynamic effects are accounted for: amplification of the differential pressure associated with a focusing phenomenon, and viscous damping at the BM-fluid interface. The predictions of the analytical 2-D Wentzel-Kramers-Brillouin (WKB) approach are compared to solutions of a 3-D finite element model, showing that these hydrodynamic phenomena yield stable high-gain response in the peak region and a smooth transition among models with different effectiveness of the active mechanism, mimicking the cochlear nonlinear response over a wide stimulus level range. This study explains how an effectively anti-damping nonlinear outer hair cells (OHC) force may yield large BM and pressure dynamical ranges along with an almost level-independent admittance.

Sisto, R., Belardinelli, D., Moleti, A. (2021). Fluid focusing and viscosity allow high gain and stability of the cochlear response. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA, 150(6), 4283-4296 [10.1121/10.0008940].

Fluid focusing and viscosity allow high gain and stability of the cochlear response

Belardinelli, Daniele;Moleti, Arturo
2021-01-01

Abstract

This paper discusses the role of two-dimensional (2-D)/three-dimensional (3-D) cochlear fluid hydrodynamics in the generation of the large nonlinear dynamical range of the basilar membrane (BM) and pressure response, in the decoupling between cochlear gain and tuning, and in the dynamic stabilization of the high-gain BM response in the peak region. The large and closely correlated dependence on stimulus level of the BM velocity and fluid pressure gain [Dong, W., and Olson, E. S. (2013). Biophys. J. 105(4), 1067-1078] is consistent with a physiologically oriented schematization of the outer hair cell (OHC) mechanism if two hydrodynamic effects are accounted for: amplification of the differential pressure associated with a focusing phenomenon, and viscous damping at the BM-fluid interface. The predictions of the analytical 2-D Wentzel-Kramers-Brillouin (WKB) approach are compared to solutions of a 3-D finite element model, showing that these hydrodynamic phenomena yield stable high-gain response in the peak region and a smooth transition among models with different effectiveness of the active mechanism, mimicking the cochlear nonlinear response over a wide stimulus level range. This study explains how an effectively anti-damping nonlinear outer hair cells (OHC) force may yield large BM and pressure dynamical ranges along with an almost level-independent admittance.
2021
Pubblicato
Rilevanza internazionale
Articolo
Esperti anonimi
Settore FIS/07 - FISICA APPLICATA (A BENI CULTURALI, AMBIENTALI, BIOLOGIA E MEDICINA)
English
Con Impact Factor ISI
Sisto, R., Belardinelli, D., Moleti, A. (2021). Fluid focusing and viscosity allow high gain and stability of the cochlear response. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA, 150(6), 4283-4296 [10.1121/10.0008940].
Sisto, R; Belardinelli, D; Moleti, A
Articolo su rivista
File in questo prodotto:
File Dimensione Formato  
JASA2021b.pdf

solo utenti autorizzati

Tipologia: Versione Editoriale (PDF)
Licenza: Copyright dell'editore
Dimensione 10.74 MB
Formato Adobe PDF
10.74 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2108/283755
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 6
  • ???jsp.display-item.citation.isi??? 2
social impact