We are concerned with the global bifurcation analysis of positive solutions to free boundary problems arising in plasma physics. We show that in general, in the sense of domain variations,the following alternativeholds: either the shape of the branchof solutions resembles the monotoneone of the model case of the two-dimensional disk, or it is a continuous simple curve without bifurcation points which ends up at a point where the boundary density vanishes. On the otherhand,wededuceageneralcriterionensuringtheexistenceofafreebound- ary in the interior of the domain. Application to a classic nonlinear eigenvalue problem is also discussed.

Bartolucci, D., Hu, Y., Jevnikar, A., Yang, W. (2022). Generic properties of free boundary problems in plasma physics*. NONLINEARITY, 35(1), 411-444 [10.1088/1361-6544/ac3923].

Generic properties of free boundary problems in plasma physics*

Bartolucci, Daniele
Membro del Collaboration Group
;
2022-01-01

Abstract

We are concerned with the global bifurcation analysis of positive solutions to free boundary problems arising in plasma physics. We show that in general, in the sense of domain variations,the following alternativeholds: either the shape of the branchof solutions resembles the monotoneone of the model case of the two-dimensional disk, or it is a continuous simple curve without bifurcation points which ends up at a point where the boundary density vanishes. On the otherhand,wededuceageneralcriterionensuringtheexistenceofafreebound- ary in the interior of the domain. Application to a classic nonlinear eigenvalue problem is also discussed.
2022
Pubblicato
Rilevanza internazionale
Articolo
Esperti anonimi
Settore MAT/05 - ANALISI MATEMATICA
English
free boundary problem; plasma physics; bifurcation analysis; generic properties
Bartolucci, D., Hu, Y., Jevnikar, A., Yang, W. (2022). Generic properties of free boundary problems in plasma physics*. NONLINEARITY, 35(1), 411-444 [10.1088/1361-6544/ac3923].
Bartolucci, D; Hu, Y; Jevnikar, A; Yang, W
Articolo su rivista
File in questo prodotto:
File Dimensione Formato  
BHJY Nonlin (2022) 35 411-444.pdf

solo utenti autorizzati

Tipologia: Versione Editoriale (PDF)
Licenza: Copyright dell'editore
Dimensione 779.88 kB
Formato Adobe PDF
779.88 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2108/283595
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 2
social impact