We prove quantitative statistical stability results for a large class of small C-0 perturbations of circle diffeomorphisms with irrational rotation numbers. We show that if the rotation number is Diophantine the invariant measure varies in a Holder way under perturbation of the map and the Holder exponent depends on the Diophantine type of the rotation number. The set of admissible perturbations includes the ones coming from spatial discretization and hence numerical truncation. We also show linear response for smooth per-turbations that preserve the rotation number, as well as for more general ones. This is done by means of classical tools from KAM theory, while the quanti-tative stability results are obtained by transfer operator techniques applied to suitable spaces of measures with a weak topology.
Galatolo, S., Sorrentino, A. (2022). Quantitative statistical stability and linear response for irrational rotations and diffeomorphisms of the circle. DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 42(2), 815-839 [10.3934/dcds.2021138].
Quantitative statistical stability and linear response for irrational rotations and diffeomorphisms of the circle
Sorrentino, Alfonso
2022-01-01
Abstract
We prove quantitative statistical stability results for a large class of small C-0 perturbations of circle diffeomorphisms with irrational rotation numbers. We show that if the rotation number is Diophantine the invariant measure varies in a Holder way under perturbation of the map and the Holder exponent depends on the Diophantine type of the rotation number. The set of admissible perturbations includes the ones coming from spatial discretization and hence numerical truncation. We also show linear response for smooth per-turbations that preserve the rotation number, as well as for more general ones. This is done by means of classical tools from KAM theory, while the quanti-tative stability results are obtained by transfer operator techniques applied to suitable spaces of measures with a weak topology.File | Dimensione | Formato | |
---|---|---|---|
Galatolo_SorrentinoFinale.pdf
solo utenti autorizzati
Tipologia:
Versione Editoriale (PDF)
Licenza:
Copyright dell'editore
Dimensione
635.2 kB
Formato
Adobe PDF
|
635.2 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.