We study the correlation between the nodal length of random spherical harmonics and the length of a nonzero level set. We show that the correlation is asymptotically zero, while the partial correlation after removing the effect of the random L-2-norm of the eigenfunctions is asymptotically one.
Marinucci, D., Rossi, M. (2021). On the correlation between nodal and nonzero level sets for random spherical harmonics. ANNALES HENRI POINCARE', 22(1), 275-307 [10.1007/s00023-020-00985-3].
On the correlation between nodal and nonzero level sets for random spherical harmonics
Domenico Marinucci
;
2021-01-01
Abstract
We study the correlation between the nodal length of random spherical harmonics and the length of a nonzero level set. We show that the correlation is asymptotically zero, while the partial correlation after removing the effect of the random L-2-norm of the eigenfunctions is asymptotically one.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
AHP2021.pdf
solo utenti autorizzati
Licenza:
Copyright dell'editore
Dimensione
598.02 kB
Formato
Adobe PDF
|
598.02 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.