Of the endocannabinoids (eCBs), anandamide (AEA) and 2-arachidonoylglycerol (2-AG) have received the most study. A functional interaction between these molecules has never been described. Using mouse brain slices, we found that stimulation of metabotropic glutamate 5 receptors by 3,5-dihydroxyphenylglycine (DHPG) depressed inhibitory transmission in the striatum through selective involvement of 2-AG metabolism and stimulation of presynaptic CB1 receptors. Elevation of AEA concentrations by pharmacological or genetic inhibition of AEA degradation reduced the levels, metabolism and physiological effects of 2-AG. Exogenous AEA and the stable AEA analog methanandamide inhibited basal and DHPG-stimulated 2-AG production, confirming that AEA is responsible for the downregulation of the other eCB. AEA is an endovanilloid substance, and the stimulation of transient receptor potential vanilloid 1 (TRPV1) channels mimicked the effects of endogenous AEA on 2-AG metabolism through a previously unknown glutathione-dependent pathway. Consistently, the interaction between AEA and 2-AG was lost after pharmacological and genetic inactivation of TRPV1 channels.
Maccarrone, M., Rossi, S., Bari, M., De Chiara, V., Fezza, F., Musella, A., et al. (2008). Anandamide inhibits metabolism and physiological actions of 2-arachidonoylglycerol in the striatum. NATURE NEUROSCIENCE, 11(2), 152-159 [10.1038/nn2042].
Anandamide inhibits metabolism and physiological actions of 2-arachidonoylglycerol in the striatum
FEZZA, FILOMENA;GASPERI, VALERIA;BERNARDI, GIORGIO;CENTONZE, DIEGO
2008-01-01
Abstract
Of the endocannabinoids (eCBs), anandamide (AEA) and 2-arachidonoylglycerol (2-AG) have received the most study. A functional interaction between these molecules has never been described. Using mouse brain slices, we found that stimulation of metabotropic glutamate 5 receptors by 3,5-dihydroxyphenylglycine (DHPG) depressed inhibitory transmission in the striatum through selective involvement of 2-AG metabolism and stimulation of presynaptic CB1 receptors. Elevation of AEA concentrations by pharmacological or genetic inhibition of AEA degradation reduced the levels, metabolism and physiological effects of 2-AG. Exogenous AEA and the stable AEA analog methanandamide inhibited basal and DHPG-stimulated 2-AG production, confirming that AEA is responsible for the downregulation of the other eCB. AEA is an endovanilloid substance, and the stimulation of transient receptor potential vanilloid 1 (TRPV1) channels mimicked the effects of endogenous AEA on 2-AG metabolism through a previously unknown glutathione-dependent pathway. Consistently, the interaction between AEA and 2-AG was lost after pharmacological and genetic inactivation of TRPV1 channels.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.