In the last decades, great attention has been focused on the characterization of cellular foams, because of their morphological peculiarities that allow for obtaining effective combinations of structural properties. A predictive analytical model for the compressive behavior of closed-cell Al foams, based on the correlation between the morphology of the cellular structure and its mechanical response, was developed. The cells’ morphology of cylindrical specimens was investigated at different steps of compression by X-ray computed tomography, in order to detect the collapse evolution. The structure, typically inhomogeneous at local level, was represented by developing a global virtual model consisting of homogeneous cells ordered in space, that was fitted on the experimentally detected structure at each deformation step. As a result, the main parameters characterizing the two-dimensional cells morphology (equivalent diameter, circularity), processed by the model, allowed to simulate the whole compression stress–strain curve by enveloping those obtained for each step. The model, fitted on the previous foam, was validated by comparing the simulated stress–strain curve and the corresponding experimental one, detected for similar foams obtained by different powder compositions. The effectiveness in terms of an accurate prediction of the compression response up to the final densification regime has been confirmed.

Costanza, G., Giudice, F., Sili, A.m., Tata, M.e. (2021). Correlation modeling between morphology and compression behavior of closed-cell al foams based on x-ray computed tomography observations. METALS, 11 [10.3390/met11091370].

Correlation modeling between morphology and compression behavior of closed-cell al foams based on x-ray computed tomography observations

Girolamo Costanza;Andrea Sili;Maria Elisa Tata
2021-08-30

Abstract

In the last decades, great attention has been focused on the characterization of cellular foams, because of their morphological peculiarities that allow for obtaining effective combinations of structural properties. A predictive analytical model for the compressive behavior of closed-cell Al foams, based on the correlation between the morphology of the cellular structure and its mechanical response, was developed. The cells’ morphology of cylindrical specimens was investigated at different steps of compression by X-ray computed tomography, in order to detect the collapse evolution. The structure, typically inhomogeneous at local level, was represented by developing a global virtual model consisting of homogeneous cells ordered in space, that was fitted on the experimentally detected structure at each deformation step. As a result, the main parameters characterizing the two-dimensional cells morphology (equivalent diameter, circularity), processed by the model, allowed to simulate the whole compression stress–strain curve by enveloping those obtained for each step. The model, fitted on the previous foam, was validated by comparing the simulated stress–strain curve and the corresponding experimental one, detected for similar foams obtained by different powder compositions. The effectiveness in terms of an accurate prediction of the compression response up to the final densification regime has been confirmed.
30-ago-2021
Pubblicato
Rilevanza internazionale
Articolo
Esperti anonimi
Settore ING-IND/21 - METALLURGIA
English
Con Impact Factor ISI
Al foams; Analytical modeling; Closed cells morphology; Compression behavior; Computed tomography
10.3390/met11091370
Costanza, G., Giudice, F., Sili, A.m., Tata, M.e. (2021). Correlation modeling between morphology and compression behavior of closed-cell al foams based on x-ray computed tomography observations. METALS, 11 [10.3390/met11091370].
Costanza, G; Giudice, F; Sili, Am; Tata, Me
Articolo su rivista
File in questo prodotto:
File Dimensione Formato  
metals-11-01370-v2.pdf

accesso aperto

Descrizione: Articolo principale
Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 6.35 MB
Formato Adobe PDF
6.35 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2108/280853
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 11
  • ???jsp.display-item.citation.isi??? 10
social impact