This work presents the design and characterization of an ultralow-power core chip for electronically scanned arrays at X-band, implemented in 0.25-/0.5-μm E-/D-mode gallium arsenide (GaAs) pHEMT technology. In particular, design details are given about the two core functional blocks embedded in the microwave monolithic integrated circuit (MMIC): a 12-bit phase and amplitude control circuit and an 18-bit serial-to-parallel (S2P) interface. The S2P interface was designed resorting to a custom symmetric device model, expressly conceived for the time-domain simulations required for digital circuits. Due to the adoption of a differential structure with resistive pull-ups, it achieves a state-of-the-art power consumption of 2.2 mW/bit and nearly 87% yield. The analog circuit includes a 6-bit phase shifter (PS) and a 6-bit attenuator. To mitigate risks, two different PS architectures have been developed and are compared in this work, discussing advantages and drawbacks of the different solutions. Since the two designs share the same target specifications, a truly fair comparison can be made not only in terms of performance but also concerning robustness and repeatability, thus providing useful guidelines for the selection of the most appropriate strategy. In particular, it is shown that one architecture outperforms the other by about 2 dB and 1.5° in terms of insertion loss and rms phase error, respectively.

Ramella, C., Longhi, P.e., Pace, L., Nasri, A., Ciccognani, W., Pirola, M., et al. (2022). Ultralow-power digital control and signal conditioning in GaAs MMIC core chip for X-band AESA systems. IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, 367-379 [10.1109/TMTT.2021.3088460].

Ultralow-power digital control and signal conditioning in GaAs MMIC core chip for X-band AESA systems

Longhi P. E.;Ciccognani W.;Limiti E.
2022-01-01

Abstract

This work presents the design and characterization of an ultralow-power core chip for electronically scanned arrays at X-band, implemented in 0.25-/0.5-μm E-/D-mode gallium arsenide (GaAs) pHEMT technology. In particular, design details are given about the two core functional blocks embedded in the microwave monolithic integrated circuit (MMIC): a 12-bit phase and amplitude control circuit and an 18-bit serial-to-parallel (S2P) interface. The S2P interface was designed resorting to a custom symmetric device model, expressly conceived for the time-domain simulations required for digital circuits. Due to the adoption of a differential structure with resistive pull-ups, it achieves a state-of-the-art power consumption of 2.2 mW/bit and nearly 87% yield. The analog circuit includes a 6-bit phase shifter (PS) and a 6-bit attenuator. To mitigate risks, two different PS architectures have been developed and are compared in this work, discussing advantages and drawbacks of the different solutions. Since the two designs share the same target specifications, a truly fair comparison can be made not only in terms of performance but also concerning robustness and repeatability, thus providing useful guidelines for the selection of the most appropriate strategy. In particular, it is shown that one architecture outperforms the other by about 2 dB and 1.5° in terms of insertion loss and rms phase error, respectively.
gen-2022
Pubblicato
Rilevanza internazionale
Articolo
Esperti anonimi
Settore ING-INF/01 - ELETTRONICA
English
Gallium arsenide
Gallium arsenide (GaAs)
Integrated circuit modeling
Integrated circuit reliability
Load modeling
Microwave circuits
microwave monolithic integrated circuit (MMIC)
mixed analog-to-digital integrated circuits.
Radio frequency
Transmission line measurements
Ramella, C., Longhi, P.e., Pace, L., Nasri, A., Ciccognani, W., Pirola, M., et al. (2022). Ultralow-power digital control and signal conditioning in GaAs MMIC core chip for X-band AESA systems. IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, 367-379 [10.1109/TMTT.2021.3088460].
Ramella, C; Longhi, Pe; Pace, L; Nasri, A; Ciccognani, W; Pirola, M; Limiti, E
Articolo su rivista
File in questo prodotto:
File Dimensione Formato  
Ultralow-Power_Digital_Control_and_Signal_Conditioning_in_GaAs_MMIC_Core_Chip_for_X-Band_AESA_Systems.pdf

solo utenti autorizzati

Tipologia: Versione Editoriale (PDF)
Licenza: Copyright dell'editore
Dimensione 9.53 MB
Formato Adobe PDF
9.53 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2108/278561
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 11
  • ???jsp.display-item.citation.isi??? 8
social impact