Here we investigate meaningful families of vector bundles on a very general polarized K3 surface (X,H) and on the corresponding Hyper--Kähler variety given by the Hilbert scheme of points X[k]:=Hilbk(X), for any integer k⩾2. In particular, we prove results concerning bigness and stability of such bundles. First, we give conditions on integers n such that the twist of the tangent bundle of X by the line bundle nH turns out to be big and stable on X; we then prove a similar result for a natural twist of the tangent bundle of X[k]. Next, by a careful analysis on Segre classes, we prove bigness and stability results for tautological bundles on X[k] arising either from line bundles or from Mukai-Lazarsfeld bundles, as well as from Ulrich bundles on X.

Bini, G., Boissiere, S., Flamini, F. (2022). Some families of big and stable bundles on K3 surfaces and on their Hilbert schemes of points. MANUSCRIPTA MATHEMATICA, 172(3-4), 705-738 [10.1007/s00229-022-01439-2].

Some families of big and stable bundles on K3 surfaces and on their Hilbert schemes of points

Flamini F
2022-01-01

Abstract

Here we investigate meaningful families of vector bundles on a very general polarized K3 surface (X,H) and on the corresponding Hyper--Kähler variety given by the Hilbert scheme of points X[k]:=Hilbk(X), for any integer k⩾2. In particular, we prove results concerning bigness and stability of such bundles. First, we give conditions on integers n such that the twist of the tangent bundle of X by the line bundle nH turns out to be big and stable on X; we then prove a similar result for a natural twist of the tangent bundle of X[k]. Next, by a careful analysis on Segre classes, we prove bigness and stability results for tautological bundles on X[k] arising either from line bundles or from Mukai-Lazarsfeld bundles, as well as from Ulrich bundles on X.
2022
Pubblicato
Rilevanza internazionale
Articolo
Esperti anonimi
Settore MAT/03 - GEOMETRIA
Settore MATH-02/B - Geometria
English
Con Impact Factor ISI
K3 surfaces; Hyperkaehler varieties; vector bundles
https://link.springer.com/article/10.1007/s00229-022-01439-2
Bini, G., Boissiere, S., Flamini, F. (2022). Some families of big and stable bundles on K3 surfaces and on their Hilbert schemes of points. MANUSCRIPTA MATHEMATICA, 172(3-4), 705-738 [10.1007/s00229-022-01439-2].
Bini, G; Boissiere, S; Flamini, F
Articolo su rivista
File in questo prodotto:
File Dimensione Formato  
Manuscripta2022_BBF.pdf

solo utenti autorizzati

Descrizione: Articolo su Rivista
Tipologia: Versione Editoriale (PDF)
Licenza: Copyright dell'editore
Dimensione 528.9 kB
Formato Adobe PDF
528.9 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2108/278463
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact