Compact locally maximal hyperbolic sets are studied via geometrically defined functional spaces that take advantage of the smoothness of the map in a neighborhood of the hyperbolic set. This provides a self-contained theory that not only reproduces all the known classical results but gives also new insights on the statistical properties of these systems.

Gouezel, S., Liverani, C. (2008). Compact locally maximal hyperbolic sets for smooth maps: fine statistical properties. JOURNAL OF DIFFERENTIAL GEOMETRY, 79(3), 433-477.

Compact locally maximal hyperbolic sets for smooth maps: fine statistical properties

LIVERANI, CARLANGELO
2008-01-01

Abstract

Compact locally maximal hyperbolic sets are studied via geometrically defined functional spaces that take advantage of the smoothness of the map in a neighborhood of the hyperbolic set. This provides a self-contained theory that not only reproduces all the known classical results but gives also new insights on the statistical properties of these systems.
2008
Pubblicato
Rilevanza internazionale
Articolo
Sì, ma tipo non specificato
Settore MAT/03 - GEOMETRIA
English
Con Impact Factor ISI
Gouezel, S., Liverani, C. (2008). Compact locally maximal hyperbolic sets for smooth maps: fine statistical properties. JOURNAL OF DIFFERENTIAL GEOMETRY, 79(3), 433-477.
Gouezel, S; Liverani, C
Articolo su rivista
File in questo prodotto:
File Dimensione Formato  
euclid.jdg.1213798184.pdf

accesso aperto

Dimensione 436.3 kB
Formato Adobe PDF
436.3 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2108/27688
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 73
  • ???jsp.display-item.citation.isi??? 69
social impact