We used MUSE adaptive optics data in narrow field mode to study the properties of the ionised gas in MR 2251-178 and PG 1126-041, two nearby (z similar or equal to 0.06) bright quasars (QSOs) hosting sub-pc scale ultra-fast outflows (UFOs) detected in the X-ray band. We decomposed the optical emission from diffuse gas into a low- and a high-velocity components. The former is characterised by a clean, regular velocity field and a low (similar to 80 km s(-1)) velocity dispersion. It traces regularly rotating gas in PG 1126-041, while in MR 2251-178 it is possibly associated with tidal debris from a recent merger or flyby. The other component is found to be extended up to a few kpc from the nuclei, and shows a high (similar to 800 km s(-1)) velocity dispersion and a blue-shifted mean velocity, as is expected from outflows driven by active galactic nuclei (AGN). We estimate mass outflow rates up to a few M-circle dot yr(-1) and kinetic efficiencies L-KIN/L-BOL between 1-4x10(-4), in line with those of galaxies hosting AGN of similar luminosities. The momentum rates of these ionised outflows are comparable to those measured for the UFOs at sub-pc scales, which is consistent with a momentum-driven wind propagation. Pure energy-driven winds are excluded unless about 100x additional momentum is locked in massive molecular winds. In comparing the outflow properties of our sources with those of a small sample of well-studied QSOs hosting UFOs from the literature, we find that winds seem to systematically lie either in a momentum-driven or an energy-driven regime, indicating that these two theoretical models bracket the physics of AGN-driven winds very well.

Marasco, A., Cresci, G., Nardini, E., Mannucci, F., Marconi, A., Tozzi, P., et al. (2020). Galaxy-scale ionised winds driven by ultra-fast outflows in two nearby quasars. ASTRONOMY & ASTROPHYSICS, 644 [10.1051/0004-6361/202038889].

Galaxy-scale ionised winds driven by ultra-fast outflows in two nearby quasars

Tombesi F.;
2020-01-01

Abstract

We used MUSE adaptive optics data in narrow field mode to study the properties of the ionised gas in MR 2251-178 and PG 1126-041, two nearby (z similar or equal to 0.06) bright quasars (QSOs) hosting sub-pc scale ultra-fast outflows (UFOs) detected in the X-ray band. We decomposed the optical emission from diffuse gas into a low- and a high-velocity components. The former is characterised by a clean, regular velocity field and a low (similar to 80 km s(-1)) velocity dispersion. It traces regularly rotating gas in PG 1126-041, while in MR 2251-178 it is possibly associated with tidal debris from a recent merger or flyby. The other component is found to be extended up to a few kpc from the nuclei, and shows a high (similar to 800 km s(-1)) velocity dispersion and a blue-shifted mean velocity, as is expected from outflows driven by active galactic nuclei (AGN). We estimate mass outflow rates up to a few M-circle dot yr(-1) and kinetic efficiencies L-KIN/L-BOL between 1-4x10(-4), in line with those of galaxies hosting AGN of similar luminosities. The momentum rates of these ionised outflows are comparable to those measured for the UFOs at sub-pc scales, which is consistent with a momentum-driven wind propagation. Pure energy-driven winds are excluded unless about 100x additional momentum is locked in massive molecular winds. In comparing the outflow properties of our sources with those of a small sample of well-studied QSOs hosting UFOs from the literature, we find that winds seem to systematically lie either in a momentum-driven or an energy-driven regime, indicating that these two theoretical models bracket the physics of AGN-driven winds very well.
2020
Pubblicato
Rilevanza internazionale
Articolo
Esperti anonimi
Settore FIS/05 - ASTRONOMIA E ASTROFISICA
English
Con Impact Factor ISI
quasars: individual: MR 2251-178; quasars: individual: PG 1126-041;ISM: jets and outflows; techniques: imaging spectroscopy; galaxies: ISM
Marasco, A., Cresci, G., Nardini, E., Mannucci, F., Marconi, A., Tozzi, P., et al. (2020). Galaxy-scale ionised winds driven by ultra-fast outflows in two nearby quasars. ASTRONOMY & ASTROPHYSICS, 644 [10.1051/0004-6361/202038889].
Marasco, A; Cresci, G; Nardini, E; Mannucci, F; Marconi, A; Tozzi, P; Tozzi, G; Amiri, A; Venturi, G; Piconcelli, E; Lanzuisi, G; Tombesi, F; Mingozzi, M; Perna, M; Carniani, S; Brusa, M; DI Serego Alighieri, S
Articolo su rivista
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2108/276767
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 27
  • ???jsp.display-item.citation.isi??? 26
social impact