Abstract. Let Fn, n > 2, be the free group on n generators, denoted by U1,U2, . . . ,Un. Let C¤(Fn) be the full C¤-algebra of Fn. Let X be the vector subspace of the algebraic tensor product C(Fn) ­ C¤(Fn), spannedby 1 ­ 1,U1 ­ 1, . . . ,Un ­ 1, 1 ­ U1, . . . , 1 ­ Un. Let k · kmin and k · kmax be the minimal and maximal C¤ tensor norms on C¤(Fn)­C¤(Fn), and use the same notation for the corresponding (matrix) norms induced on Mk(C)­X, k 2 N. Identifying X with the subspace of C¤(F2n) obtained by mapping U1­ 1, . . . , 1­Un into the 2n generators and the identity into the identity, we get a matrix norm k · kC¤(F2n) which dominates the k · kmax norm on Mk(C)­X. In this paper we prove that, with N = 2n + 1 = dimX, we have kXkmax 6 kXkC¤(F2n) 6 (N2 − N)1/2kXkmin, X 2 Mk(C) ­ X

Radulescu, F. (2004). A comparison between the max and min norms on C∗(Fn)⊗C∗(Fn). JOURNAL OF OPERATOR THEORY, 51(2), 245-253.

A comparison between the max and min norms on C∗(Fn)⊗C∗(Fn).

RADULESCU, FLORIN
2004-10-01

Abstract

Abstract. Let Fn, n > 2, be the free group on n generators, denoted by U1,U2, . . . ,Un. Let C¤(Fn) be the full C¤-algebra of Fn. Let X be the vector subspace of the algebraic tensor product C(Fn) ­ C¤(Fn), spannedby 1 ­ 1,U1 ­ 1, . . . ,Un ­ 1, 1 ­ U1, . . . , 1 ­ Un. Let k · kmin and k · kmax be the minimal and maximal C¤ tensor norms on C¤(Fn)­C¤(Fn), and use the same notation for the corresponding (matrix) norms induced on Mk(C)­X, k 2 N. Identifying X with the subspace of C¤(F2n) obtained by mapping U1­ 1, . . . , 1­Un into the 2n generators and the identity into the identity, we get a matrix norm k · kC¤(F2n) which dominates the k · kmax norm on Mk(C)­X. In this paper we prove that, with N = 2n + 1 = dimX, we have kXkmax 6 kXkC¤(F2n) 6 (N2 − N)1/2kXkmin, X 2 Mk(C) ­ X
Pubblicato
Rilevanza internazionale
Articolo
Esperti anonimi
Settore MAT/05 - Analisi Matematica
English
Con Impact Factor ISI
operator spaces, Connes conjecture
http://www.theta.ro/jot/archive/2004-051-002/2004-051-002-011.pdf
Radulescu, F. (2004). A comparison between the max and min norms on C∗(Fn)⊗C∗(Fn). JOURNAL OF OPERATOR THEORY, 51(2), 245-253.
Radulescu, F
Articolo su rivista
File in questo prodotto:
File Dimensione Formato  
articleFlorinRadulescuJOT.pdf

accesso aperto

Descrizione: Articolo
Licenza: Copyright dell'editore
Dimensione 205.99 kB
Formato Adobe PDF
205.99 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/2108/27435
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 4
  • ???jsp.display-item.citation.isi??? 3
social impact