In this paper, a permalloy layer has been employed in the fabrication of a coupled line electromagnetic bandgap (EMBG) device to tune both amplitude and phase. A magnetically biased microwave coplanar confi'guration manufactured with evaporated permalloy has been measured, and a circuit modelling has been studied to evaluate the measured effects in terms of variable attenuation and phase shift. Starting from a permalloy made by the mixture 80% nickel and 20% iron content, we fabricated an electromagnetic bandgap (EMBG) structure based on a periodic arrangement of single sections of a transmission line with variable impedance, also including a central region with coupled lines. The bandpass characteristics of the EMBG device can be tuned by changing permalloy's permeability through the application of a DC magnetic fi'eld H-0 (parallel to the plane of the structure). In particular, using a magnetic fi'eld up to 3000 Oe, it was possible to change the phase by ca. 45 degrees and the amplitude by ca. 7 dB in the X band.
Aldrigo, M., Cismaru, A., Dragoman, M., Iordanescu, S., Proietti, E., Sardi, G., et al. (2020). Amplitude and Phase Tuning of Microwave Signals in Magnetically Biased Permalloy Structures. IEEE ACCESS, 8, 190843-190854 [10.1109/ACCESS.2020.3031310].
Amplitude and Phase Tuning of Microwave Signals in Magnetically Biased Permalloy Structures
Bartolucci, G;
2020-10-15
Abstract
In this paper, a permalloy layer has been employed in the fabrication of a coupled line electromagnetic bandgap (EMBG) device to tune both amplitude and phase. A magnetically biased microwave coplanar confi'guration manufactured with evaporated permalloy has been measured, and a circuit modelling has been studied to evaluate the measured effects in terms of variable attenuation and phase shift. Starting from a permalloy made by the mixture 80% nickel and 20% iron content, we fabricated an electromagnetic bandgap (EMBG) structure based on a periodic arrangement of single sections of a transmission line with variable impedance, also including a central region with coupled lines. The bandpass characteristics of the EMBG device can be tuned by changing permalloy's permeability through the application of a DC magnetic fi'eld H-0 (parallel to the plane of the structure). In particular, using a magnetic fi'eld up to 3000 Oe, it was possible to change the phase by ca. 45 degrees and the amplitude by ca. 7 dB in the X band.File | Dimensione | Formato | |
---|---|---|---|
IEEE_Access_2020.pdf
accesso aperto
Descrizione: Articolo su rivista internazionale
Tipologia:
Versione Editoriale (PDF)
Licenza:
Copyright dell'editore
Dimensione
1.42 MB
Formato
Adobe PDF
|
1.42 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.