Let $\,G\,$ be a non-compact, real semisimple Lie group. We consider maximal complexifications of $\,G\,$ which are adapted to a distinguished one-parameter family of naturally reductive, left-invariant metrics. In the case of $\,G=SL_2(\R)\,$ their realization as equivariant Riemann domains over $\,G^\C=SL_2(\C)\,$ is carried out and their complex-geometric properties are investigated. One obtains new examples of non-univalent, non-Stein, maximal adapted complexifications.

Halversheid, S., Iannuzzi, A. (2009). A family of adapted complexifications for SL(2,R). ANNALI DELLA SCUOLA NORMALE SUPERIORE DI PISA. CLASSE DI SCIENZE, VIII(1), 17-49.

A family of adapted complexifications for SL(2,R).

IANNUZZI, ANDREA
2009-01-01

Abstract

Let $\,G\,$ be a non-compact, real semisimple Lie group. We consider maximal complexifications of $\,G\,$ which are adapted to a distinguished one-parameter family of naturally reductive, left-invariant metrics. In the case of $\,G=SL_2(\R)\,$ their realization as equivariant Riemann domains over $\,G^\C=SL_2(\C)\,$ is carried out and their complex-geometric properties are investigated. One obtains new examples of non-univalent, non-Stein, maximal adapted complexifications.
2009
Pubblicato
Rilevanza internazionale
Articolo
Sì, ma tipo non specificato
Settore MAT/03 - GEOMETRIA
English
Halversheid, S., Iannuzzi, A. (2009). A family of adapted complexifications for SL(2,R). ANNALI DELLA SCUOLA NORMALE SUPERIORE DI PISA. CLASSE DI SCIENZE, VIII(1), 17-49.
Halversheid, S; Iannuzzi, A
Articolo su rivista
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2108/27354
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? 0
social impact