The striatum is thought to play an important role in the spreading of epilepsy from cortical areas to deeper brain structures, but this issue has not been addressed with intracellular techniques. Paired recordings were used to assess the impact of cortical epileptiform activity on striatal neurons in brain slices. Bath-application of 4-amynopyridine (100 microM) and bicuculline (20 microM) induced synchronized bursts in all pairs of cortical neurons (< or = 5 mm apart) in coronal, sagittal, and oblique slices (which preserve connections from the medial agranular cortex to the striatum). Under these conditions, striatal medium spiny neurons (MSs) displayed a strong increased spontaneous glutamatergic activity. This activity was not correlated to the cortical bursts and was asynchronous in pairs of MSs. Sporadic, large-amplitude synchronous depolarizations also occurred in MSs. These events were simultaneously detected in glial cells, suggesting that they were accompanied by considerable increases in extracellular potassium. In oblique slices, cortically driven bursts were also observed in MSs. These events were synchronized to cortical epileptiform bursts, depended on non-N-methyl-D-aspartate (NMDA) glutamate receptors, and persisted in the cortex, but not in the striatum, after disconnection of the two structures. During these bursts, MS membrane potential shifted to a depolarized value (59 +/- 4 mV) on which an irregular waveform, occasionally eliciting spikes, was superimposed. Thus synchronous activation of a limited set of corticostriatal afferents can powerfully control MSs. Cholinergic interneurons located < 120 microm from simultaneously recorded MSs, did not display cortically driven bursts, suggesting that these cells are much less easily engaged by cortical epileptiform activity.

Bracci, E., Centonze, D., Bernardi, G., Calabresi, P. (2004). Engagement of rat striatal neurons by cortical epileptiform activity investigated with paired recordings. JOURNAL OF NEUROPHYSIOLOGY, 92(5), 2725-2737 [10.1152/jn.00585.2004].

Engagement of rat striatal neurons by cortical epileptiform activity investigated with paired recordings

CENTONZE, DIEGO;BERNARDI, GIORGIO;CALABRESI, PAOLO
2004-11-01

Abstract

The striatum is thought to play an important role in the spreading of epilepsy from cortical areas to deeper brain structures, but this issue has not been addressed with intracellular techniques. Paired recordings were used to assess the impact of cortical epileptiform activity on striatal neurons in brain slices. Bath-application of 4-amynopyridine (100 microM) and bicuculline (20 microM) induced synchronized bursts in all pairs of cortical neurons (< or = 5 mm apart) in coronal, sagittal, and oblique slices (which preserve connections from the medial agranular cortex to the striatum). Under these conditions, striatal medium spiny neurons (MSs) displayed a strong increased spontaneous glutamatergic activity. This activity was not correlated to the cortical bursts and was asynchronous in pairs of MSs. Sporadic, large-amplitude synchronous depolarizations also occurred in MSs. These events were simultaneously detected in glial cells, suggesting that they were accompanied by considerable increases in extracellular potassium. In oblique slices, cortically driven bursts were also observed in MSs. These events were synchronized to cortical epileptiform bursts, depended on non-N-methyl-D-aspartate (NMDA) glutamate receptors, and persisted in the cortex, but not in the striatum, after disconnection of the two structures. During these bursts, MS membrane potential shifted to a depolarized value (59 +/- 4 mV) on which an irregular waveform, occasionally eliciting spikes, was superimposed. Thus synchronous activation of a limited set of corticostriatal afferents can powerfully control MSs. Cholinergic interneurons located < 120 microm from simultaneously recorded MSs, did not display cortically driven bursts, suggesting that these cells are much less easily engaged by cortical epileptiform activity.
nov-2004
Pubblicato
Rilevanza internazionale
Articolo
Sì, ma tipo non specificato
Settore MED/26 - NEUROLOGIA
English
Con Impact Factor ISI
Male; Corpus Striatum; Bicuculline; 4-Aminopyridine; Epilepsies, Partial; Neurons; Rats, Wistar; Rats; Animals; Receptors, N-Methyl-D-Aspartate; Receptors, Glutamate; Cerebral Cortex
Bracci, E., Centonze, D., Bernardi, G., Calabresi, P. (2004). Engagement of rat striatal neurons by cortical epileptiform activity investigated with paired recordings. JOURNAL OF NEUROPHYSIOLOGY, 92(5), 2725-2737 [10.1152/jn.00585.2004].
Bracci, E; Centonze, D; Bernardi, G; Calabresi, P
Articolo su rivista
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2108/27188
Citazioni
  • ???jsp.display-item.citation.pmc??? 3
  • Scopus 9
  • ???jsp.display-item.citation.isi??? 9
social impact