Hollow (air-filled) microparticles, i.e., microbubbles, provide a promising novel vehicle for both local delivery of therapeutic agents and simultaneous diagnostic ultrasound echo investigations. In this paper, we describe the synthetic routes for decorating the polymeric shell of a poly(vinyl alcohol)-based microbubble with low and high molecular weight ligands with pharmacological relevance. Investigations on physical properties of microbubbles and surface chemical coupling with different cargo molecules such as L-Cysteine, L-lysine, poly(L-lysine), chitosan, and beta-cyclodextrin were carried out by CD and NMR spectroscopies, confocal laser scanning microscopy, and microcalorimetry. The in vitro cytotoxicity and biocompatibility of the polymer microbubbles have been also determined toward different cell lines. The results are discussed in terms of the features shown by this device, i.e., injectability, long shelf life, ease of preparation, biocompatibility, loading and cargo capacities, and functional properties.

Cavalieri, F., El Hamassi, A., Chiessi, E., Paradossi, G., Villa, R., & Zaffaroni, N. (2006). Tethering functional ligands onto shell of ultrasound active polymeric microbubbles. BIOMACROMOLECULES, 7(2), 604-611 [10.1021/bm050723g].

Tethering functional ligands onto shell of ultrasound active polymeric microbubbles

CAVALIERI, FRANCESCA;
2006

Abstract

Hollow (air-filled) microparticles, i.e., microbubbles, provide a promising novel vehicle for both local delivery of therapeutic agents and simultaneous diagnostic ultrasound echo investigations. In this paper, we describe the synthetic routes for decorating the polymeric shell of a poly(vinyl alcohol)-based microbubble with low and high molecular weight ligands with pharmacological relevance. Investigations on physical properties of microbubbles and surface chemical coupling with different cargo molecules such as L-Cysteine, L-lysine, poly(L-lysine), chitosan, and beta-cyclodextrin were carried out by CD and NMR spectroscopies, confocal laser scanning microscopy, and microcalorimetry. The in vitro cytotoxicity and biocompatibility of the polymer microbubbles have been also determined toward different cell lines. The results are discussed in terms of the features shown by this device, i.e., injectability, long shelf life, ease of preparation, biocompatibility, loading and cargo capacities, and functional properties.
Pubblicato
Rilevanza internazionale
Articolo
Sì, ma tipo non specificato
Settore CHIM/02 - Chimica Fisica
English
Con Impact Factor ISI
POLY(VINYL ALCOHOL); DELIVERY; DNA; POLYLYSINE; VECTORS; SYSTEM; AGENTS
Cavalieri, F., El Hamassi, A., Chiessi, E., Paradossi, G., Villa, R., & Zaffaroni, N. (2006). Tethering functional ligands onto shell of ultrasound active polymeric microbubbles. BIOMACROMOLECULES, 7(2), 604-611 [10.1021/bm050723g].
Cavalieri, F; El Hamassi, A; Chiessi, E; Paradossi, G; Villa, R; Zaffaroni, N
Articolo su rivista
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/2108/27136
Citazioni
  • ???jsp.display-item.citation.pmc??? 9
  • Scopus ND
  • ???jsp.display-item.citation.isi??? 67
social impact