The spin-orbit problem in celestial mechanics describes the motion of an oblate satellite moving on a Keplerian orbit around a primary body. We apply the conjugate points criterion for the nonexistence of rotational invariant tori. We treat both the conservative case and a case including a dissipative effect modeling a tidal torque generated by internal nonrigidity. As a by-product of the conjugate points criterion we obtain a global view of the dynamics, thanks to the introduction of a tangent orbit indicator, which allows us to discern the dynamical character of the motion. (c) 2007 American Institute of Physics.

Celletti, A., Mackay, R. (2007). Regions of nonexistence of invariant tori for spin-orbit models. CHAOS, 17(4) [10.1063/1.2811880].

Regions of nonexistence of invariant tori for spin-orbit models

CELLETTI, ALESSANDRA;
2007-01-01

Abstract

The spin-orbit problem in celestial mechanics describes the motion of an oblate satellite moving on a Keplerian orbit around a primary body. We apply the conjugate points criterion for the nonexistence of rotational invariant tori. We treat both the conservative case and a case including a dissipative effect modeling a tidal torque generated by internal nonrigidity. As a by-product of the conjugate points criterion we obtain a global view of the dynamics, thanks to the introduction of a tangent orbit indicator, which allows us to discern the dynamical character of the motion. (c) 2007 American Institute of Physics.
2007
Pubblicato
Rilevanza internazionale
Articolo
Sì, ma tipo non specificato
Settore MAT/07 - FISICA MATEMATICA
English
Con Impact Factor ISI
Converse KAM theory; invariant tori
Celletti, A., Mackay, R. (2007). Regions of nonexistence of invariant tori for spin-orbit models. CHAOS, 17(4) [10.1063/1.2811880].
Celletti, A; Mackay, R
Articolo su rivista
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2108/27131
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? 13
social impact