We study the parabolic Kazhdan-Lusztig polynomials for Hermitian symmetric pairs. In particular, we show that these polynomials are always either zero or a monic power of q, and that they are combinatorial invariants.
Brenti, F. (2009). Parabolic Kazhdan-Lusztig polynomials for Hermitian symmetric pairs. TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 361(4), 1703-1729 [10.1090/S0002-9947-08-04458-9].
Parabolic Kazhdan-Lusztig polynomials for Hermitian symmetric pairs
BRENTI, FRANCESCO
2009-01-01
Abstract
We study the parabolic Kazhdan-Lusztig polynomials for Hermitian symmetric pairs. In particular, we show that these polynomials are always either zero or a monic power of q, and that they are combinatorial invariants.File in questo prodotto:
Non ci sono file associati a questo prodotto.
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.