We study the parabolic Kazhdan-Lusztig polynomials for Hermitian symmetric pairs. In particular, we show that these polynomials are always either zero or a monic power of q, and that they are combinatorial invariants.

Brenti, F. (2009). Parabolic Kazhdan-Lusztig polynomials for Hermitian symmetric pairs. TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 361(4), 1703-1729 [10.1090/S0002-9947-08-04458-9].

Parabolic Kazhdan-Lusztig polynomials for Hermitian symmetric pairs

BRENTI, FRANCESCO
2009-01-01

Abstract

We study the parabolic Kazhdan-Lusztig polynomials for Hermitian symmetric pairs. In particular, we show that these polynomials are always either zero or a monic power of q, and that they are combinatorial invariants.
Pubblicato
Rilevanza internazionale
Articolo
Sì, ma tipo non specificato
Settore MAT/03 - Geometria
English
COMBINATORIAL FORMULA; R-POLYNOMIALS
27
http://www.ams.org/journals/tran/2009-361-04/S0002-9947-08-04458-9/S0002-9947-08-04458-9.pdf
Brenti, F. (2009). Parabolic Kazhdan-Lusztig polynomials for Hermitian symmetric pairs. TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 361(4), 1703-1729 [10.1090/S0002-9947-08-04458-9].
Brenti, F
Articolo su rivista
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2108/27061
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 10
  • ???jsp.display-item.citation.isi??? 11
social impact