According to the current literature on the cooling of two cylinders in row, by a uniform flow of air, the first cylinder is always a heat transfer promoter versus the second one. The aim of the present paper is to summarize the state of art of the literature on the cooling of two cylinders in row by a slot jet of air. Additional experiments are carried on in order to investigate the possible application of jet cooling to heat transfer apparatuses, including electronics, in order to study the positions of the two cylinders in row which realize the same heat transfer on each cylinder. In the experiments a slot jet of air with low turbulence is employed with a slot height, S, equal to the impinged cylinder diameter, D, i.e. D/S = 1.0. The first cylinder is set at two distances H from the slot exit, H/S = 4 and 6, while the distance of the second cylinder from the first one, L, is variable from L/S = 2–11. The Reynolds number, Re, defined with the cylinder diameter D, spans in the range Re = 11,000–22,200. If the first cylinder is set at the dimensionless distance from the slot exit which realizes the maximum mean heat transfer on the first cylinder, i.e. H/S = 6, the second one has generally a lower mean Nusselt number. The only exception is when the second cylinder is set at the dimensionless distance L/S = 4 and the Reynolds number is at the maximum value experimented, i.e. Re = 22,200. If the first cylinder is set at the dimensionless distance H/S = 4 the mean Nusselt number on the second cylinder is greater if its distance from the first one is in the range L/S = 3.5–7 for Re = 14,300–22,200. The first cylinder acts as a heat transfer promoter, as happens in uniform flow, only for Re = 22,200.
Gori, F., Petracci, I., Tedestco, V. (2007). Cooling of two smooth cylinders in a row by a slot jet of air with low turbulence. APPLIED THERMAL ENGINEERING, 27(14-15), 2415-2425 [10.1016/j.applthermaleng.2007.03.006].
Cooling of two smooth cylinders in a row by a slot jet of air with low turbulence
GORI, FABIO;PETRACCI, IVANO;
2007-01-01
Abstract
According to the current literature on the cooling of two cylinders in row, by a uniform flow of air, the first cylinder is always a heat transfer promoter versus the second one. The aim of the present paper is to summarize the state of art of the literature on the cooling of two cylinders in row by a slot jet of air. Additional experiments are carried on in order to investigate the possible application of jet cooling to heat transfer apparatuses, including electronics, in order to study the positions of the two cylinders in row which realize the same heat transfer on each cylinder. In the experiments a slot jet of air with low turbulence is employed with a slot height, S, equal to the impinged cylinder diameter, D, i.e. D/S = 1.0. The first cylinder is set at two distances H from the slot exit, H/S = 4 and 6, while the distance of the second cylinder from the first one, L, is variable from L/S = 2–11. The Reynolds number, Re, defined with the cylinder diameter D, spans in the range Re = 11,000–22,200. If the first cylinder is set at the dimensionless distance from the slot exit which realizes the maximum mean heat transfer on the first cylinder, i.e. H/S = 6, the second one has generally a lower mean Nusselt number. The only exception is when the second cylinder is set at the dimensionless distance L/S = 4 and the Reynolds number is at the maximum value experimented, i.e. Re = 22,200. If the first cylinder is set at the dimensionless distance H/S = 4 the mean Nusselt number on the second cylinder is greater if its distance from the first one is in the range L/S = 3.5–7 for Re = 14,300–22,200. The first cylinder acts as a heat transfer promoter, as happens in uniform flow, only for Re = 22,200.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.