We demonstrate spray coating of graphene ink as a viable method for large-area fabrication of graphene-based dye-sensitized solar cell (DSSC) modules. A graphene-based ink produced by liquid phase exfoliation of graphite is spray coated onto a transparent conductive oxide substrate to realize a large area (>90 cm(2)) semi-transparent (transmittance 44%) counter-electrode (CE) replacing platinum, the standard CE material. The graphene-based CE is successfully integrated in a large-area (43.2 cm(2) active area) DSSC module achieving a power conversion efficiency of 3.5%. The approach demonstrated here paves the way to all-printed, flexible, and transparent graphene-based large-area and cost-effective photovoltaic devices on arbitrary substrates.
Casaluci, S., Gemmi, M., Pellegrini, V., Di Carlo, A., Bonaccorso, F. (2016). Graphene-based large area dye-sensitized solar cell modules. NANOSCALE, 8(9), 5368-5378 [10.1039/c5nr07971c].
Graphene-based large area dye-sensitized solar cell modules
Casaluci, S;Di Carlo, A
;
2016-01-01
Abstract
We demonstrate spray coating of graphene ink as a viable method for large-area fabrication of graphene-based dye-sensitized solar cell (DSSC) modules. A graphene-based ink produced by liquid phase exfoliation of graphite is spray coated onto a transparent conductive oxide substrate to realize a large area (>90 cm(2)) semi-transparent (transmittance 44%) counter-electrode (CE) replacing platinum, the standard CE material. The graphene-based CE is successfully integrated in a large-area (43.2 cm(2) active area) DSSC module achieving a power conversion efficiency of 3.5%. The approach demonstrated here paves the way to all-printed, flexible, and transparent graphene-based large-area and cost-effective photovoltaic devices on arbitrary substrates.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.