Given an inclusion B subset of F of (graded) local nets, we analyse the structure of the corresponding inclusion of scaling limit nets B-0 subset of F-0, giving conditions, fulfilled in free field theory, under which the unicity of the scaling limit of F implies that of the scaling limit of B. As a byproduct, we compute explicitly the (unique) scaling limit of the fixpoint nets of scalar free field theories. In the particular case of an inclusion A subset of B of local nets with the same canonical field net F, we find sufficient conditions which entail the equality of the canonical field nets of A(0) and B-0.

Conti, R., Morsella, G. (2009). Scaling Limit for Subsystems and Doplicher-Roberts Reconstruction. ANNALES HENRI POINCARE', 10(3), 485-511 [10.1007/s00023-009-0418-8].

Scaling Limit for Subsystems and Doplicher-Roberts Reconstruction

MORSELLA, GERARDO
2009-01-01

Abstract

Given an inclusion B subset of F of (graded) local nets, we analyse the structure of the corresponding inclusion of scaling limit nets B-0 subset of F-0, giving conditions, fulfilled in free field theory, under which the unicity of the scaling limit of F implies that of the scaling limit of B. As a byproduct, we compute explicitly the (unique) scaling limit of the fixpoint nets of scalar free field theories. In the particular case of an inclusion A subset of B of local nets with the same canonical field net F, we find sufficient conditions which entail the equality of the canonical field nets of A(0) and B-0.
2009
Pubblicato
Rilevanza internazionale
Articolo
Sì, ma tipo non specificato
Settore MAT/05 - ANALISI MATEMATICA
English
QUANTUM-FIELD THEORY; TRIVIAL SUPERSELECTION STRUCTURE; PHASE-SPACE PROPERTIES; RENORMALIZATION-GROUP; LOCAL OBSERVABLES; CHARGED FIELDS; ALGEBRAS; NETS; CLASSIFICATION; INCLUSIONS
Conti, R., Morsella, G. (2009). Scaling Limit for Subsystems and Doplicher-Roberts Reconstruction. ANNALES HENRI POINCARE', 10(3), 485-511 [10.1007/s00023-009-0418-8].
Conti, R; Morsella, G
Articolo su rivista
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2108/26731
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 5
  • ???jsp.display-item.citation.isi??? 5
social impact