We prove that evolution families on complex complete hyperbolic manifolds are in one to one correspondence with certain semicomplete non-autonomous holomorphic vector fields, providing the solution to a very general Loewner type differential equation on manifolds.

Bracci, F., Contreras, M., Diaz Madrigal, S. (2009). Evolution families and the Loewner equation II: complex hyperbolic manifolds. MATHEMATISCHE ANNALEN, 344(4), 947-962 [10.1007/s00208-009-0340-x].

Evolution families and the Loewner equation II: complex hyperbolic manifolds

BRACCI, FILIPPO;
2009-01-01

Abstract

We prove that evolution families on complex complete hyperbolic manifolds are in one to one correspondence with certain semicomplete non-autonomous holomorphic vector fields, providing the solution to a very general Loewner type differential equation on manifolds.
2009
Pubblicato
Rilevanza internazionale
Articolo
Sì, ma tipo non specificato
Settore MAT/03 - GEOMETRIA
English
Con Impact Factor ISI
Loewner theory; hyperbolic complex manifolds
Bracci, F., Contreras, M., Diaz Madrigal, S. (2009). Evolution families and the Loewner equation II: complex hyperbolic manifolds. MATHEMATISCHE ANNALEN, 344(4), 947-962 [10.1007/s00208-009-0340-x].
Bracci, F; Contreras, M; Diaz Madrigal, S
Articolo su rivista
File in questo prodotto:
File Dimensione Formato  
Evolution-mnf_journal.pdf

solo utenti autorizzati

Licenza: Creative commons
Dimensione 225.71 kB
Formato Adobe PDF
225.71 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

Questo articolo è pubblicato sotto una Licenza Licenza Creative Commons Creative Commons

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2108/26647
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 73
  • ???jsp.display-item.citation.isi??? 67
social impact