We prove that evolution families on complex complete hyperbolic manifolds are in one to one correspondence with certain semicomplete non-autonomous holomorphic vector fields, providing the solution to a very general Loewner type differential equation on manifolds.
Bracci, F., Contreras, M., Diaz Madrigal, S. (2009). Evolution families and the Loewner equation II: complex hyperbolic manifolds. MATHEMATISCHE ANNALEN, 344(4), 947-962 [10.1007/s00208-009-0340-x].
Evolution families and the Loewner equation II: complex hyperbolic manifolds
BRACCI, FILIPPO;
2009-01-01
Abstract
We prove that evolution families on complex complete hyperbolic manifolds are in one to one correspondence with certain semicomplete non-autonomous holomorphic vector fields, providing the solution to a very general Loewner type differential equation on manifolds.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
Evolution-mnf_journal.pdf
solo utenti autorizzati
Licenza:
Creative commons
Dimensione
225.71 kB
Formato
Adobe PDF
|
225.71 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Questo articolo è pubblicato sotto una Licenza Licenza Creative Commons