The protein IF1 limits mitochondrial ATP consumption when mitochondrial respiration is impaired by inhibiting the 'reverse' activity of the F(1)F(o)-ATPsynthase. We have found that IF1 also increases F(1)F(o)-ATPsynthase activity in respiring mitochondria, promoting its dimerization and increasing the density of mitochondrial cristae. We also noted that IF1 overexpression was associated with an increase in mitochondrial volume fraction that was conversely reduced when IF1 was knocked down using small interfering RNA (siRNA). The volume change did not correlate with the level of transcription factors involved in mitochondrial biogenesis. However, autophagy was dramatically increased in the IF1siRNA treated cells (-IF1), assessed by quantifying LC3-GFP translocation to autophagosomes, whilst levels of autophagy were low in IF1 overexpressing cells (+IF1). The increase in LC3-GFP labelled autophagosomes in -IF1 cells was prevented by the superoxide dismutase mimetic, manganese (III) tetrakis (4-benzoic acid) porphyrin (MnTBAP). An increase in the basal rate of generation of reactive oxygen species (ROS) in -IF1 cells was demonstrated using the fluorescent probe dihydroethidium (DHE). Thus, IF1 appears to limit mitochondrial ROS generation, limiting autophagy which is increased by IF1 knockdown. Variations in IF1 expression level may therefore play a significant role in defining both resting rates of ROS generation and cellular mitochondrial content.

Campanella, M., Seraphim, A., Abeti, R., Casswell, E., Echave, P., Duchen, M.r. (2009). IF1, the endogenous regulator of the F(1)F(o)-ATPsynthase, defines mitochondrial volume fraction in HeLa cells by regulating autophagy. BIOCHIMICA ET BIOPHYSICA ACTA, 1787(5), 393-401 [10.1016/j.bbabio.2009.02.023].

IF1, the endogenous regulator of the F(1)F(o)-ATPsynthase, defines mitochondrial volume fraction in HeLa cells by regulating autophagy

Campanella, Michelangelo
;
2009-05-01

Abstract

The protein IF1 limits mitochondrial ATP consumption when mitochondrial respiration is impaired by inhibiting the 'reverse' activity of the F(1)F(o)-ATPsynthase. We have found that IF1 also increases F(1)F(o)-ATPsynthase activity in respiring mitochondria, promoting its dimerization and increasing the density of mitochondrial cristae. We also noted that IF1 overexpression was associated with an increase in mitochondrial volume fraction that was conversely reduced when IF1 was knocked down using small interfering RNA (siRNA). The volume change did not correlate with the level of transcription factors involved in mitochondrial biogenesis. However, autophagy was dramatically increased in the IF1siRNA treated cells (-IF1), assessed by quantifying LC3-GFP translocation to autophagosomes, whilst levels of autophagy were low in IF1 overexpressing cells (+IF1). The increase in LC3-GFP labelled autophagosomes in -IF1 cells was prevented by the superoxide dismutase mimetic, manganese (III) tetrakis (4-benzoic acid) porphyrin (MnTBAP). An increase in the basal rate of generation of reactive oxygen species (ROS) in -IF1 cells was demonstrated using the fluorescent probe dihydroethidium (DHE). Thus, IF1 appears to limit mitochondrial ROS generation, limiting autophagy which is increased by IF1 knockdown. Variations in IF1 expression level may therefore play a significant role in defining both resting rates of ROS generation and cellular mitochondrial content.
mag-2009
Pubblicato
Rilevanza internazionale
Articolo
Esperti anonimi
Settore BIO/06 - ANATOMIA COMPARATA E CITOLOGIA
English
Con Impact Factor ISI
Adenosine Triphosphate
Autophagy
Cell Death
HeLa Cells
Homeostasis
Humans
Membrane Potentials
Mitochondria
Proteins
Proton-Translocating ATPases
RNA, Messenger
Reactive Oxygen Species
Signal Transduction
Transcription Factors
Transfection
Campanella, M., Seraphim, A., Abeti, R., Casswell, E., Echave, P., Duchen, M.r. (2009). IF1, the endogenous regulator of the F(1)F(o)-ATPsynthase, defines mitochondrial volume fraction in HeLa cells by regulating autophagy. BIOCHIMICA ET BIOPHYSICA ACTA, 1787(5), 393-401 [10.1016/j.bbabio.2009.02.023].
Campanella, M; Seraphim, A; Abeti, R; Casswell, E; Echave, P; Duchen, Mr
Articolo su rivista
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2108/265745
Citazioni
  • ???jsp.display-item.citation.pmc??? 35
  • Scopus 60
  • ???jsp.display-item.citation.isi??? ND
social impact